Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2312261, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733225

RESUMO

Myocardial infarction (MI) is a significant cardiovascular disease that restricts blood flow, resulting in massive cell death and leading to stiff and noncontractile fibrotic scar tissue formation. Recently, sustained oxygen release in the MI area has shown regeneration ability; however, improving its therapeutic efficiency for regenerative medicine remains challenging. Here, a combinatorial strategy for cardiac repair by developing cardioprotective and oxygenating hybrid hydrogels that locally sustain the release of stromal cell-derived factor-1 alpha (SDF) and oxygen for simultaneous activation of neovascularization at the infarct area is presented. A sustained release of oxygen and SDF from injectable, mechanically robust, and tissue-adhesive silk-based hybrid hydrogels is achieved. Enhanced endothelialization under normoxia and anoxia is observed. Furthermore, there is a marked improvement in vascularization that leads to an increment in cardiomyocyte survival by ≈30% and a reduction of the fibrotic scar formation in an MI animal rodent model. Improved left ventricular systolic and diastolic functions by ≈10% and 20%, respectively, with a ≈25% higher ejection fraction on day 7 are also observed. Therefore, local delivery of therapeutic oxygenating and cardioprotective hydrogels demonstrates beneficial effects on cardiac functional recovery for reparative therapy.

2.
Adv Sci (Weinh) ; 11(11): e2306722, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38213111

RESUMO

Osteoarthritis (OA) is a multifactorial degenerative joint disease of which the underlying mechanisms are yet to be fully understood. At the molecular level, multiple factors including altered signaling pathways, epigenetics, metabolic imbalance, extracellular matrix degradation, production of matrix metalloproteinases, and inflammatory cytokines, are known to play a detrimental role in OA. However, these factors do not initiate OA, but are mediators or consequences of the disease, while many other factors causing the etiology of OA are still unknown. Here, it is revealed that microenvironmental osmolarity can induce and reverse osteoarthritis-related behavior of chondrocytes via altered intracellular molecular crowding, which represents a previously unknown mechanism underlying OA pathophysiology. Decreased intracellular crowding is associated with increased sensitivity to proinflammatory triggers and decreased responsiveness to anabolic stimuli. OA-induced lowered intracellular molecular crowding could be renormalized via exposure to higher extracellular osmolarity such as those found in healthy joints, which reverse OA chondrocyte's sensitivity to catabolic stimuli as well as its glycolytic metabolism.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Osteoartrite/metabolismo , Condrócitos/metabolismo , Condrócitos/patologia , Citocinas/metabolismo , Concentração Osmolar
3.
Adv Mater ; : e2308949, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095242

RESUMO

The vascular tree is crucial for the survival and function of large living tissues. Despite breakthroughs in 3D bioprinting to endow engineered tissues with large blood vessels, there is currently no approach to engineer high-density capillary networks into living tissues in a scalable manner. Here, photoannealing of living microtissue (PALM) is presented as a scalable strategy to engineer capillary-rich tissues. Specifically, in-air microfluidics is used to produce living microtissues composed of cell-laden microgels in ultrahigh throughput, which can be photoannealed into a monolithic living matter. Annealed microtissues inherently give rise to an open and interconnected pore network within the resulting living matter. Interestingly, utilizing soft microgels enables microgel deformation, which leads to the uniform formation of capillary-sized pores. Importantly, the ultrahigh throughput nature underlying the microtissue formation uniquely facilitates scalable production of living tissues of clinically relevant sizes (>1 cm3 ) with an integrated high-density capillary network. In short, PALM generates monolithic, microporous, modular tissues that meet the previously unsolved need for large engineered tissues containing high-density vascular networks, which is anticipated to advance the fields of engineered organs, regenerative medicine, and drug screening.

4.
Mater Today Bio ; 22: 100791, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37731960

RESUMO

Osteoarthritis (OA) is a degenerative disease of the joints for which no curative treatment exists. Intra-articular injection of stem cells is explored as a regenerative approach, but rapid clearance of cells from the injection site limits the therapeutic outcome. Microencapsulation of mesenchymal stem cells (MSCs) can extend the retention time of MSCs, but the outcomes of the few studies currently performed are conflicting. We hypothesize that the composition of the micromaterial's shell plays a deciding factor in the treatment outcome of intra-articular MSC injection. To this end, we microencapsulate MSCs using droplet microfluidic generators in flow-focus mode using various polymers and polymer concentrations. We demonstrate that polymer composition and concentration potently alter the metabolic activity as well as the secretome of MSCs. Moreover, while microencapsulation consistently prolongs the retention time of MSC injected in rat joints, distinct biodistribution within the joint is demonstrated for the various microgel formulations. Furthermore, intra-articular injections of pristine and microencapsulated MSC in OA rat joints show a strong material-dependent effect on the reduction of cartilage degradation and matrix loss. Collectively, this study highlights that micromaterial composition and concentration are key deciding factors for the therapeutic outcome of intra-articular injections of microencapsulated stem cells to treat degenerative joint diseases.

5.
Adv Healthc Mater ; : e2301552, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37548084

RESUMO

Transplantation of microencapsulated pancreatic cells is emerging as a promising therapy to replenish ß-cell mass lost from auto-immune nature of type I diabetes mellitus (T1DM). This strategy intends to use micrometer-sized microgels to provide immunoprotection to transplanted cells to avoid chronic application of immunosuppression. Clinical application of encapsulation has remained elusive due to often limited production throughputs and body's immunological reactions to implanted materials. This article presents a high-throughput fabrication of monodisperse, non-immunogenic, non-degradable, immunoprotective, semi-permeable, enzymatically-crosslinkable polyethylene glycol-tyramine (PEG-TA) microgels for ß-cell microencapsulation. Monodisperse ß-cell laden microgels of ≈120 µm, with a shell thickness of 20 µm are produced using an outside-in crosslinking strategy. Microencapsulated ß-cells rapidly self-assemble into islet-sized spheroids. Immunoprotection of the microencapsulated is demonstrated by inability of FITC-IgG antibodies to diffuse into cell-laden microgels and NK-cell inability to kill microencapsulated ß-cells. Multiplexed ELISA analysis on live blood immune reactivity confirms limited immunogenicity. Microencapsulated MIN6ß1 spheroids remain glucose responsive for 28 days in vitro, and able to restore normoglycemia 5 days post-implantation in diabetic mice without notable amounts of cell death. In short, PEG-TA microgels effectively protect implanted cells from the host's immune system while being viable and functional, validating this strategy for the treatment of T1DM.

6.
Biomacromolecules ; 24(6): 2755-2765, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37222557

RESUMO

We establish a versatile hydrogel platform based on modular building blocks that allows the design of hydrogels with tailored physical architecture and mechanical properties. We demonstrate its versatility by assembling (i) a fully monolithic gelatin methacryloyl (Gel-MA) hydrogel, (ii) a hybrid hydrogel composed of 1:1 Gel-MA and gelatin nanoparticles, and (iii) a fully particulate hydrogel based on methacryloyl-modified gelatin nanoparticles. The hydrogels were formulated to exhibit the same solid content and comparable storage modulus but different stiffness and viscoelastic stress relaxation. The incorporation of particles resulted in softer hydrogels with enhanced stress relaxation. Murine osteoblastic cells cultured in two-dimensional (2D) on hydrogels showed proliferation and metabolic activity comparable to established collagen hydrogels. Furthermore, the osteoblastic cells showed a trend of increased cell numbers, cell expansion, and more defined protrusions on stiffer hydrogels. Hence, modular assembly allows the design of hydrogels with tailored mechanical properties and the potential to alter cell behavior.


Assuntos
Gelatina , Hidrogéis , Camundongos , Animais , Hidrogéis/farmacologia , Colágeno , Proliferação de Células , Engenharia Tecidual/métodos
7.
Mater Today Bio ; 19: 100551, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36747582

RESUMO

Given the dynamic nature of engineered vascular networks within biofabricated tissue analogues, it is instrumental to have control over the constantly evolving biochemical cues within synthetic matrices throughout tissue remodeling. Incorporation of pro-angiogenic vascular endothelial growth factor (VEGF165) specific aptamers into cell-instructive polymer networks is shown to be pivotal for spatiotemporally controlling the local bioactivity of VEGF that selectively elicit specific cell responses. To harness this effect and quantitatively unravel its spatial resolution, herein, bicomponent micropatterns consisting of VEGF165 specific aptamer-functionalized gelatin methacryloyl (GelMA) (aptamer regions) overlaid with pristine GelMA regions using visible-light photoinitiators (Ru/SPS) were fabricated via two-step photopatterning approach. For the 3D co-culture study, human umbilical vein-derived endothelial cells and mesenchymal stromal cells were used as model cell types. Bicomponent micropatterns with spatially defined spacings (300/500/800 â€‹µm) displayed high aptamer retention, aptamer-fluorescent complementary sequence (CSF) molecular recognition and VEGF sequestration localized within patterned aptamer regions. Stiffness gradient at the interface of aptamer and GelMA regions was observed with high modulus in aptamer region followed by low stiffness GelMA regions. Leveraging aptamer-tethered VEGF's dynamic affinity interactions with CS that upon hybridization facilitates triggered VEGF release, co-culture studies revealed unique characteristics of aptamer-tethered VEGF to form spatially defined luminal vascular networks covered with filopodia-like structures in vitro (spatial control) and highlights their ability to control network properties including orientation over time using CS as an external trigger (temporal control). Moreover, the comparison of single and double exposed regions within micropatterns revealed differences in cell behavior among both regions. Specifically, the localized aptamer-tethered VEGF within single exposed aptamer regions exhibited higher cellular alignment within the micropatterns till d5 of culture. Taken together, this study highlights the potential of photopatterned aptamer-tethered VEGF to spatiotemporally regulate vascular morphogenesis as a tool for controlling vascular remodeling in situ.

8.
Adv Sci (Weinh) ; 10(10): e2205487, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599686

RESUMO

Engineered living microtissues such as cellular spheroids and organoids have enormous potential for the study and regeneration of tissues and organs. Microtissues are typically engineered via self-assembly of adherent cells into cellular spheroids, which are characterized by little to no cell-material interactions. Consequently, 3D microtissue models currently lack structural biomechanical and biochemical control over their internal microenvironment resulting in suboptimal functional performance such as limited stem cell differentiation potential. Here, this work report on stimuli-responsive cell-adhesive micromaterials (SCMs) that can self-assemble with cells into 3D living composite microtissues through integrin binding, even under serum-free conditions. It is demonstrated that SCMs homogeneously distribute within engineered microtissues and act as biomechanically and biochemically tunable designer materials that can alter the composite tissue microenvironment on demand. Specifically, cell behavior is controlled based on the size, stiffness, number ratio, and biofunctionalization of SCMs in a temporal manner via orthogonal secondary crosslinking strategies. Photo-based mechanical tuning of SCMs reveals early onset stiffness-controlled lineage commitment of differentiating stem cell spheroids. In contrast to conventional encapsulation of stem cell spheroids within bulk hydrogel, incorporating cell-sized SCMs within stem cell spheroids uniquely provides biomechanical cues throughout the composite microtissues' volume, which is demonstrated to be essential for osteogenic differentiation.


Assuntos
Osteogênese , Células-Tronco , Diferenciação Celular , Esferoides Celulares , Hidrogéis
9.
Adv Sci (Weinh) ; 10(8): e2204609, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36585374

RESUMO

Embedded 3D bioprinting has great value for the freeform fabrication of living matter. However, embedded 3D bioprinting is currently limited to highly viscous liquid baths or liquid-like solid baths. In contrast, prior to crosslinking, most hydrogels are formulated as low-viscosity solutions and are therefore not directly compatible with bioprinting due to low shape fidelity and poor print stability. The authors here present a method to enable low-viscosity ink 3D (LoV3D) bioprinting, based on aqueous two-phase stabilization of the ink-bath interface. LoV3D allows for the printing of living constructs at high extrusion speeds (up to 1.8 m s-1 ) with high viability due to its exceedingly low-viscosity. Moreover, LoV3D liquid/liquid interfaces offer unique advantages for fusing printed structures, creating intricate vasculature, and modifying surfaces at higher efficiencies than traditional systems. Furthermore, the low interfacial tension of LoV3D bioprinting offers unprecedented nozzle-independent control over filament diameter via large-dimension strand-thinning, which allows for the printing of an exceptionally wide range of diameters down to the width of a single cell. Overall, LoV3D bioprinting is a unique all-aqueous approach with broad material compatibility without the need for rheological ink adaption, which opens new avenues of application in cell patterning, drug screening, engineered meat, and organ fabrication.


Assuntos
Bioimpressão , Bioimpressão/métodos , Viscosidade , Impressão Tridimensional , Hidrogéis/química , Reologia
10.
Adv Healthc Mater ; 11(13): e2102697, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35362224

RESUMO

Oxygen releasing biomaterials can facilitate the survival of living implants by creating environments with a viable oxygen level. Hydrophobic oxygen generating microparticles (HOGMPs) encapsulated calcium peroxide (CPO) have recently been used in tissue engineering to release physiologically relevant amounts of oxygen for several weeks. However, generating oxygen using CPO is mediated via the generation of toxic levels of hydrogen peroxide (H2 O2 ). The incorporation of antioxidants, such as catalases, can potentially reduce H2 O2 levels. However, the formulation in which catalases can most effectively scavenge H2 O2 within oxygen generating biomaterials has remained unexplored. In this study, three distinct catalase incorporation methods are compared based on their ability to decrease H2 O2 levels. Specifically, catalase is incorporated within HOGMPs, or absorbed onto HOGMPs, or freely laden into the hydrogel entrapping HOGMPs and compared with control without catalase. Supplementation of free catalase in an HOGMP-laden hydrogel significantly decreases H2 O2 levels reflecting a higher cellular viability and metabolic activity of all the groups. An HOGMP/catalase-laden hydrogel precursor solution containing cells is used as an oxygenating bioink allowing improved viability of printed constructs under severe hypoxic conditions. The combination of HOGMPs with a catalase-laden hydrogel has the potential to decrease peroxide toxicity of oxygen generating tissues.


Assuntos
Materiais Biocompatíveis , Bioimpressão , Materiais Biocompatíveis/toxicidade , Bioimpressão/métodos , Catalase , Hidrogéis , Peróxido de Hidrogênio , Oxigênio , Engenharia Tecidual
11.
Materials (Basel) ; 13(22)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202741

RESUMO

There is an increasing clinical need to develop novel biomaterials that combine regenerative and biocidal properties. In this work, we present the preparation of silver/silica-based glassy bioactive (ABG) compositions via a facile, fast (20 h), and low temperature (80 °C) approach and their characterization. The fabrication process included the synthesis of the bioactive glass (BG) particles followed by the surface modification of the bioactive glass with silver nanoparticles. The microstructural features of ABG samples before and after exposure to simulated body fluid (SBF), as well as their ion release behavior during SBF test were evaluated using infrared spectrometry (FTIR), ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), electron microscopies (TEM and SEM) and optical emission spectroscopy (OES). The antibacterial properties of the experimental compositions were tested against Escherichia coli (E. coli). The results indicated that the prepared ABG materials possess antibacterial activity against E. coli, which is directly correlated with the glass surface modification.

12.
ACS Nano ; 11(11): 11409-11416, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29061037

RESUMO

We demonstrate a cost-effective synthesis route that provides Si-based anode materials with capacities between 2000 and 3000 mAh·gSi-1 (400 and 600 mAh·gcomposite-1), Coulombic efficiencies above 99.5%, and almost 100% capacity retention over more than 100 cycles. The Si-based composite is prepared from highly porous silicon (obtained by reduction of silica) by encapsulation in an organic carbon and polymer-derived silicon oxycarbide (C/SiOC) matrix. Molecular dynamics simulations show that the highly porous silicon morphology delivers free volume for the accommodation of strain leading to no macroscopic changes during initial Li-Si alloying. In addition, a carbon layer provides an electrical contact, whereas the SiOC matrix significantly diminishes the interface between the electrolyte and the electrode material and thus suppresses the formation of a solid-electrolyte interphase on Si. Electrochemical tests of the micrometer-sized, glass-fiber-derived silicon demonstrate the up-scaling potential of the presented approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...