Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metallomics ; 7(11): 1515-21, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26399395

RESUMO

Sepsis is a severe inflammatory disease resulting in excessive production of pro-inflammatory cytokines including interleukin-6 (IL-6), causing oxidative stress, tissue damage and organ dysfunction. Health benefits have been observed upon selenium (Se) supplementation in severe sepsis. Selenium is incorporated into selenoproteins implicated in anti-oxidative defence, thyroid hormone metabolism and immunoregulation. Selenium metabolism is controlled by hepatocytes synthesizing and secreting the Se transporter selenoprotein P (SePP). The circulating SePP declines in sepsis causing low serum Se levels. Dysregulation of the hepatic selenoenzyme deiodinase type 1 (DIO1) potentially contributes to the low T3 (thyroid hormone) syndrome observed in severe diseases. We hypothesized that IL-6 affects hepatic selenoprotein biosynthesis directly. Testing human hepatocytes in culture, IL-6 reduced the concentrations of SePP mRNA and secreted SePP in a dose-dependent manner. In parallel, expression of DIO1 declined at the mRNA, protein and enzyme activity level. The effects of IL-6 on glutathione peroxidase (GPX) expression were isozyme-specific; GPX1 remained unaffected, while transcript concentrations of GPX2 increased and those of GPX4 decreased. This pattern of IL-6-dependent effects was mirrored in reporter gene experiments with SePP, DIO1, GPX1, and GPX2 promoter constructs pointing to direct transcriptional effects of IL-6. The redirection of hepatic selenoprotein biosynthesis by IL-6 may represent a central regulatory circuit responsible for the decline of serum Se and low T3 concentrations in sepsis. Accordingly, therapeutic IL-6 targeting may be effective for improving the Se and thyroid hormone status, adjuvant Se supplementation success and survival in sepsis.


Assuntos
Interleucina-6/metabolismo , Fígado/metabolismo , Selênio/metabolismo , Selenoproteína P/metabolismo , Glutationa Peroxidase/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Interleucina-6/genética , Selenoproteína P/genética , Sepse
2.
Metallomics ; 7(2): 347-54, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25579002

RESUMO

The biological activity of thyroid hormones (TH) is regulated by selenoenzymes of the iodothyronine deiodinase (DIO) family catalysing TH activating and inactivating reactions. Besides TH metabolism, several studies indicate an important role of DIO isoenzymes in tumorigenesis and cancer growth. It is therefore of therapeutic importance to identify modulators of DIO expression. We have synthesized and studied a series of selenocompounds containing a methyl- or benzyl-imidoselenocarbamate backbone. One of these novel compounds had chemotherapeutic activities in a murine xenograft tumour model by an unknown mechanism. Therefore, we tested their effects on DIO expression in vitro. In HepG2 hepatocarcinoma cells, DIO1 activity was strongly (up to 10-fold) increased by the methyl- but not by the corresponding benzyl-imidoselenocarbamates. Steady-state mRNA levels remained unaltered under these conditions indicating a post-transcriptional mode of action. The effects were further characterized in HEK293 cells stably expressing DIO1, DIO2 or DIO3. Even within the artificial genetic context of the expression vectors, all three DIO isoenzymes were up-regulated by the methyl- and to a lesser extent by the benzyl-imidoselenocarbamates. Consistent stimulating effects were observed with methyl-N,N'-di(quinolin-3-ylcarbonyl)-imidoselenocarbamate (EI201), a selenocompound known for its anti-tumour activity. DIO inducing effects were unrelated to the intracellular accumulation of selenium, yet the precise mode of action remains elusive. Collectively, our data highlight that these selenocompounds may constitute interesting pharmacological compounds for modifying DIO expression potentially affecting the balance between cell differentiation and proliferation.


Assuntos
Antineoplásicos/farmacologia , Iodeto Peroxidase/metabolismo , Compostos de Selênio/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Indução Enzimática/efeitos dos fármacos , Células HEK293 , Células Hep G2 , Humanos , Camundongos , Modelos Biológicos , Selênio/farmacologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...