Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446328

RESUMO

Polycystic ovary syndrome (PCOS) is known as the most common endocrine disorder in women. Previously, we suggested that human mesenchymal stem cells (MSCs) can reverse the PCOS condition by secreting factors. Here, we evaluated the therapeutic capability of MSC-derived extracellular vesicles (EVs), also known as exosomes, in both in vitro and in vivo PCOS models. Exosomes were used to treat androgen-producing H293R cells and injected in a mouse model through intraovarian and intravenous injection into a letrozole (LTZ)-induced PCOS mouse model. We assessed the effects of the exosomes on androgen-producing cells or the PCOS mouse model by analyzing steroidogenic gene expression (quantitative real-time polymerase chain reaction (qRT-PCR)), body weight change, serum hormone levels, and fertility by pup delivery. Our data show the therapeutic effect of MSC-derived EVs for reversing PCOS conditions, including fertility issues. Interestingly, intravenous injection was more effective for serum glucose regulation, and an intraovarian injection was more effective for ovary restoration. Our study suggests that MSC-derived exosomes can be promising biopharmaceutics for treating PCOS conditions as a novel therapeutic option. Despite the fact that we need more validation in human patients, we may evaluate this novel treatment option for PCOS with the following clinical trials.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Síndrome do Ovário Policístico , Animais , Camundongos , Humanos , Feminino , Síndrome do Ovário Policístico/metabolismo , Androgênios/metabolismo , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo
2.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38203232

RESUMO

Currently, there is no viable option for fertility preservation in prepubertal boys. Experimentally, controlled vitrification of testicular tissue has been evaluated and found to cause potential structural damage to the spermatogonial stem cell (SSC) niche during cryopreservation. In this report, we leveraged the regenerative effect of human umbilical cord-derived Mesenchymal stem cell exosomes (h-UCMSC-Exo) to protect against testicular damage from the cytotoxic effects of polychemotherapy (CTX). A chemotherapy-induced testicular dysfunctional model was established by CTX treatment with cyclophosphamide and Busulfan in vitro (human Sertoli cells) and in prepubescent mice. We assessed the effects of the exosomes by analyzing cell proliferation assays, molecular analysis, immunohistochemistry, body weight change, serum hormone levels, and fertility rate. Our data indicates the protective effect of h-UCMSC-Exo by preserving the SSC niche and preventing testicular damage in mice. Interestingly, mice that received multiple injections of h-UCMSC-Exo showed significantly higher fertility rates and serum testosterone levels (p < 0.01). Our study demonstrates that h-UCMSC-Exo can potentially be a novel fertility protection approach in prepubertal boys triaged for chemotherapy treatment.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Masculino , Humanos , Animais , Camundongos , Quimioterapia Combinada , Fertilidade , Espermatogônias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...