Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 34(8): 1753-1760, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37463113

RESUMO

Electron capture dissociation (ECD) is now a well-established method for sequencing peptides and performing top-down analysis on proteins of less than 30 kDa, and there is growing interest in using this approach for studies of larger proteins and protein complexes. Although much progress on ECD has been made over the past few decades, establishing methods for obtaining informative spectra still poses a significant challenge. Here we describe how digital quadrupole (DigiQ) ion isolation can be used for the mass selection of single charge states of proteins and protein complexes prior to undergoing ECD and/or charge reduction. First, we demonstrate that the DigiQ can isolate single charge states of monomeric proteins such as ubiquitin (8.6 kDa) and charge states of large protein complexes such as pyruvate kinase (234 kDa) using a hybrid quadrupole-TOF-MS (Agilent extended m/z range 6545XT). Next, we demonstrate that fragment ions resulting from ECD can be utilized to provide information about the sequence and structure of the cytochrome c/heme complex and the ubiquitin monomer. Lastly, an especially interesting result for DigiQ isolation and electron capture (EC) was noted; namely, the 16+ charge state of the streptavidin/biotin complex reveals different electron capture patterns for the biotinylated proteoforms of streptavidin. This result is consistent with previous reports that apo streptavidin exists in multiple conformations and that biotin binding shifts the conformational dynamics of the complex (Quintyn, R. Chem. Biol. 2015, 22 (55), 583-592).


Assuntos
Biotina , Elétrons , Estreptavidina , Proteínas/química , Ubiquitina/química
2.
Kidney Int ; 61(4): 1423-32, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11918749

RESUMO

BACKGROUND: The "L-arginine paradox" refers to situations where L-arginine (L-Arg) supplementation stimulates nitric oxide (NO) synthesis, despite saturating intracellular concentrations. This paradox is frequently observed in acute renal failure (ARF). First, the effects of L-Arg on renal function of rats with ARF were studied. Based on the promising results from these initial studies, the second part of our study searched for a form of ARF in humans that could be studied easily under conditions with little variance and yet was linked with endothelial dysfunction. Thus, we investigated the effects of L-Arg supplementation immediately after kidney transplantation in 54 patients. METHODS: In uranyl nitrate-induced ARF in rats the effects of L-Arg and L-NNA (inhibitor of nitric oxide synthase; NOS) on glomerular filtration rate (GFR), renal plasma flow (RPF), blood pressure (BP) and NOx (NO2- +NO3-) excretion were examined. Tissue L-Arg levels, NOS activities, immunodetection of NOS and superoxide dismutase (SOD), activities of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and xanthine oxidase, and nitrotyrosine immunoreactive protein (NT-IR) were determined and compared to sham operated animals. Secondly, in a randomized, double-blind study, the effects of L-Arg on GFR and RPF were investigated in 54 kidney transplant recipients, receiving IV L-Arg for three days. GFR and RPF were measured on days 1, 3, 5 and 10 by scintigraphy. RESULTS: In experimental ARF, decreased RPF and GFR were associated with reduced tissue L-Arg levels, endothelial NOS-III expression, NO formation and NOx excretion. Reduction in GFR, RPF and NOx excretion were reversed upon administration of exogenous L-Arg. There also was a loss of Cu,Zn-SOD, a key enzyme against oxidative stress, and an elevation of NT-IR, an indicator of nitrosative stress and suggested marker for pathological actions of NO. However, NT-IR was not dependent on de novo NO synthesis and not related to the functional effects of l-Arg administration. In kidney transplant recipients receiving organs with a short cold ischemia time (CIT) and from young donors, that is, those with a higher likelihood of a functional endothelium, early administration of L-Arg improved renal function. CONCLUSION: Both experimental and clinical data show that \L-Arg deficiency and endothelial dysfunction are pathomechanistically relevant in ARF. The data suggest a therapeutic potential for the administration of L-Arg in ARF and kidney transplantation, at least in patients receiving kidneys with shorter CIT and from younger donors.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Arginina/deficiência , Arginina/uso terapêutico , Transplante de Rim , Injúria Renal Aguda/fisiopatologia , Animais , Arginina/metabolismo , Método Duplo-Cego , Feminino , Taxa de Filtração Glomerular , Humanos , Rim/efeitos dos fármacos , Rim/fisiopatologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Oxigênio/metabolismo , Ácido Peroxinitroso/metabolismo , Ratos , Ratos Sprague-Dawley , Circulação Renal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...