Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fish Biol ; 98(2): 566-571, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33111319

RESUMO

Following a lack of detected change in white shark Carcharodon carcharias L. 1758 diet and nutritional condition attributed to the interaction with the cage-diving industry, Lusseau and Derous (Tourism Management, 2019, 75, 547-549) cautioned the use of muscle lipids and fatty acids in this context, advocating for other biomarkers. This study provides additional evidence from peer-reviewed literature to contend the usefulness of elasmobranch muscle fatty acid profiles to detail diet and habitat use. It also presents findings from a controlled experiment on captive Port Jackson sharks Heterodontus portusjacksoni (Meyer 1793) whereby long-term (daily for 33 days) 3 min exhaustive chase exercise changed muscle lipid class profiles, supporting its use to infer nutritional condition after activities such as interactions with wildlife tourism operators. Conversely, the unaltered muscle fatty acid and lipid content suggests their use in trophic ecology is not confounded by activities such as interacting with tourism operators, remaining useful biomarkers to investigate diet and habitat use.


Assuntos
Dieta/veterinária , Ácidos Graxos/análise , Lipídeos/análise , Músculo Esquelético/química , Tubarões/fisiologia , Animais , Constituição Corporal/fisiologia , Ecossistema
2.
Lipids ; 49(6): 577-90, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24719244

RESUMO

Fatty acid profile analysis is a tool for dietary investigation that may complement traditional stomach contents analysis. While recent studies have shown that the liver of sharks fed different diets have differing fatty acid profiles, the degree to which diet is reflected in shark blood serum and muscle tissue is still poorly understood. An 18-week controlled feeding experiment was undertaken using captive Port Jackson sharks (Heterodontus portusjacksoni). Sharks were fed exclusive diets of artificial pellets treated with fish or poultry oil and sampled every 6 weeks. The fatty acid profiles from liver, blood serum, and muscle were affected differently, with the period from which significant differences were observed varying by tissue and diet type. The total fatty acid profiles of fish oil and poultry oil fed sharks were significantly different from week 12 onwards in the liver and blood serum, but significant differences were only observed by week 18 in the muscle tissue of sharks fed different diets. The drivers of dissimilarity which aligned with dietary input were 14:0, 18:2n-6, 20:5n-3, 18:1n-9 and 22:6n-3 in the liver and blood serum. Dietary fatty acids accumulated more consistently in the liver than in the blood plasma or muscle, likely due to its role as the central organ for fat processing and storage. Blood serum and muscle fatty acid profiles were influenced by diet, but fluctuated over-time. The low level of correlation between diet and muscle FA profiles is likely a result of low levels of fat (<1%) in the muscle and the domination of structural, cell-membrane phospholipids in shark muscle tissues. Our findings describe inter-tissue differences in the incorporation of fatty acids from the diet to consumer, which should be taken into account when interpreting dietary patterns from fatty acid profiles.


Assuntos
Ácidos Graxos/metabolismo , Tubarões/metabolismo , Animais , Dieta , Suplementos Nutricionais , Feminino , Óleos de Peixe/administração & dosagem , Fígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Especificidade de Órgãos , Aves Domésticas
3.
PLoS One ; 8(5): e62730, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23658766

RESUMO

Elasmobranchs can detect minute electromagnetic fields, <1 nV cm(-1), using their ampullae of Lorenzini. Behavioural responses to electric fields have been investigated in various species, sometimes with the aim to develop shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1) the behaviour of 18 white sharks (Carcharodon carcharias) near a static bait, and (2) the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks.


Assuntos
Eletricidade , Comportamento Predatório , Tubarões , Animais , Ilhas , Segurança , Fatores de Tempo
4.
Physiol Biochem Zool ; 86(2): 266-78, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23434786

RESUMO

Fatty acid (FA) analysis is a tool for dietary investigation that complements traditional stomach content analyses. Controlled feeding experiments were used to determine the extent to which the FA composition of diet is reflected in the liver and muscle tissue of the Port Jackson shark Heterodontus portusjacksoni. Over 10 wk, two groups of sharks were fed prawns or squid, which have distinct FA profiles. The percentage of total FA was significantly different for shark liver and muscle tissue when comparing controls with prawn- and squid-fed sharks. Compared with experimentally fed sharks, control shark muscle and liver had higher levels of 18:1n-9 and 20:2n-9. When comparing prawn- and squid-fed sharks, only liver tissue showed a significant difference in FA profiles. The livers of prawn-fed sharks were comparatively higher in 18:1n-7, 22:5n-3, 20:0, and 18:1n-9, while the squid-fed sharks had higher levels of 16:0 and 22:6n-3. These FAs in shark liver tissue were all reflective of higher amounts in their respective dietary items, demonstrating the conservative transfer of FA from diet to liver tissue. This study shows that liver and muscle FA profiles can be used as indicators of dietary change through the comparison of controls and fed sharks. The timescale of this study may not have been sufficient for capturing the integration of FA into muscle tissue because only liver FA profiles were useful to distinguish between sharks fed different diets. These findings have important implications for sampling design where FA profiles are used to infer dietary preferences.


Assuntos
Ecologia/métodos , Elasmobrânquios/metabolismo , Ácidos Graxos/metabolismo , Fígado/metabolismo , Músculo Esquelético/metabolismo , Animais , Dieta , Feminino , Masculino , Músculos , Austrália do Sul , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...