Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2768: 167-200, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502394

RESUMO

Memory B cells (Bmem) provide the second wall of adaptive humoral host defense upon specific antigen rechallenge when the first wall, consisting of preformed antibodies originating from a preceding antibody response, fails. This is the case, as recently experienced with SARS-CoV-2 infections and previously with seasonal influenza, when levels of neutralizing antibodies decline or when variant viruses arise that evade such. While in these instances, reinfection can occur, in both scenarios, the rapid engagement of preexisting Bmem into the recall response can still confer immune protection. Bmem are known to play a critical role in host defense, yet their assessment has not become part of the standard immune monitoring repertoire. Here we describe a new generation of B cell ELISPOT/FluoroSpot (collectively ImmunoSpot®) approaches suited to dissect, at single-cell resolution, the Bmem repertoire ex vivo, revealing its immunoglobulin class/subclass utilization, and its affinity distribution for the original, and for variant viruses/antigens. Because such comprehensive B cell ImmunoSpot® tests can be performed with minimal cell material, are scalable, and robust, they promise to be well-suited for routine immune monitoring.


Assuntos
Imunidade Humoral , Células B de Memória , Linfócitos B , Antígenos , Anticorpos Neutralizantes , Anticorpos Antivirais
2.
Methods Mol Biol ; 2768: 211-239, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502396

RESUMO

The affinity distribution of the antigen-specific memory B cell (Bmem) repertoire in the body is a critical variable that defines an individual's ability to rapidly generate high-affinity protective antibody specificities. Detailed measurement of antibody affinity so far has largely been confined to studies of monoclonal antibodies (mAbs) and are laborious since each individual mAb needs to be evaluated in isolation. Here, we introduce two variants of the B cell ImmunoSpot® assay that are suitable for simultaneously assessing the affinity distribution of hundreds of individual B cells within a test sample at single-cell resolution using relatively little labor and with high-throughput capacity. First, we experimentally validated that both ImmunoSpot® assay variants are suitable for establishing functional affinity hierarchies using B cell hybridoma lines as model antibody-secreting cells (ASC), each producing mAb with known affinity for a defined antigen. We then leveraged both ImmunoSpot® variants for characterizing the affinity distribution of SARS-CoV-2 Spike-specific ASC in PBMC following COVID-19 mRNA vaccination. Such ImmunoSpot® assays promise to offer tremendous value for future B cell immune monitoring efforts, owing to their ease of implementation, applicability to essentially any antigenic system, economy of PBMC utilization, high-throughput capacity, and suitability for regulated testing.


Assuntos
Linfócitos B , Leucócitos Mononucleares , Leucócitos Mononucleares/metabolismo , ELISPOT , Antígenos , Células Produtoras de Anticorpos , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo
3.
Methods Mol Biol ; 2768: 251-272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502398

RESUMO

The B lymphocyte response can encompass four immunoglobulin (Ig) classes and four IgG subclasses, each contributing fundamentally different effector functions. Production of the appropriate Ig class/subclass is critical for both successful host defense and avoidance of immunopathology. The assessment of an antigen-specific B cell response, including its magnitude and Ig class/subclass composition, is most often confined to the antibodies present in serum and other biological fluids and neglects monitoring of the memory B cell (Bmem) compartment capable of mounting a faster and more efficient antibody response following antigen reencounter. Here, we describe how the frequency and Ig class and IgG subclass use of an antigen-specific Bmem repertoire can be determined with relatively little labor and cost, requiring only 8 × 105 freshly isolated peripheral blood mononuclear cells (PBMC), or if additional cryopreservation and polyclonal stimulation is necessary, 3 × 106 PBMC per antigen. To experimentally validate such cell saving assays, we have documented that frequency measurements of antibody-secreting cells (ASC) yield results indistinguishable from those of enzymatic (ELISPOT) or fluorescent (FluoroSpot) versions of the ImmunoSpot® assay, including when the latter are detected in alternative fluorescent channels. Moreover, we have shown that frequency calculations that are based on linear regression analysis of serial PBMC dilutions using a single well per dilution step are as accurate as those performed using replicate wells. Collectively, our data highlight the capacity of multiplexed B cell FluoroSpot assays in conjunction with serial dilutions to significantly reduce the PBMC requirement for detailed assessment of antigen-specific B cells. The protocols presented here allow GLP-compliant high-throughput measurements which should help to introduce high-dimensional Bmem characterization into the standard immune monitoring repertoire.


Assuntos
Linfócitos B , Leucócitos Mononucleares , Leucócitos Mononucleares/química , Antígenos , Células Produtoras de Anticorpos , Imunoglobulina G , Imunoglobulinas
4.
Cells ; 11(22)2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36429090

RESUMO

The scope of immune monitoring is to define the existence, magnitude, and quality of immune mechanisms operational in a host. In clinical trials and praxis, the assessment of humoral immunity is commonly confined to measurements of serum antibody reactivity without accounting for the memory B cell potential. Relying on fundamentally different mechanisms, however, passive immunity conveyed by pre-existing antibodies needs to be distinguished from active B cell memory. Here, we tested whether, in healthy human individuals, the antibody titers to SARS-CoV-2, seasonal influenza, or Epstein-Barr virus antigens correlated with the frequency of recirculating memory B cells reactive with the respective antigens. Weak correlations were found. The data suggest that the assessment of humoral immunity by measurement of antibody levels does not reflect on memory B cell frequencies and thus an individual's potential to engage in an anamnestic antibody response against the same or an antigenically related virus. Direct monitoring of the antigen-reactive memory B cell compartment is both required and feasible towards that goal.


Assuntos
COVID-19 , Infecções por Vírus Epstein-Barr , Influenza Humana , Humanos , SARS-CoV-2 , Herpesvirus Humano 4 , Anticorpos Antivirais , Células B de Memória , Estações do Ano
5.
Cells ; 10(8)2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34440612

RESUMO

Assessment of humoral immunity to SARS-CoV-2 and other infectious agents is typically restricted to detecting antigen-specific antibodies in the serum. Rarely does immune monitoring entail assessment of the memory B-cell compartment itself, although it is these cells that engage in secondary antibody responses capable of mediating immune protection when pre-existing antibodies fail to prevent re-infection. There are few techniques that are capable of detecting rare antigen-specific B cells while also providing information regarding their relative abundance, class/subclass usage and functional affinity. In theory, the ELISPOT/FluoroSpot (collectively ImmunoSpot) assay platform is ideally suited for antigen-specific B-cell assessments since it provides this information at single-cell resolution for individual antibody-secreting cells (ASC). Here, we tested the hypothesis that antigen-coating efficiency could be universally improved across a diverse set of viral antigens if the standard direct (non-specific, low affinity) antigen absorption to the membrane was substituted by high-affinity capture. Specifically, we report an enhancement in assay sensitivity and a reduction in required protein concentrations through the capture of recombinant proteins via their encoded hexahistidine (6XHis) affinity tag. Affinity tag antigen coating enabled detection of SARS-CoV-2 Spike receptor binding domain (RBD)-reactive ASC, and also significantly improved assay performance using additional control antigens. Collectively, establishment of a universal antigen-coating approach streamlines characterization of the memory B-cell compartment after SARS-CoV-2 infection or COVID-19 vaccinations, and facilitates high-throughput immune-monitoring efforts of large donor cohorts in general.


Assuntos
Antígenos Virais/análise , Linfócitos B/imunologia , ELISPOT/métodos , Memória Imunológica , SARS-CoV-2/imunologia , Proteínas Virais/imunologia , Animais , COVID-19 , Histidina , Humanos , Camundongos , Oligopeptídeos , SARS-CoV-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...