Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Rep ; 34(5): 853-60, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25627254

RESUMO

KEY MESSAGE: We describe two types of plastid outgrowths visualised in potato tubers after carboxyfluorescein diacetate staining. Probable esterase activity of the outgrowths has been demonstrated for the first time ever. Plastid outgrowths were observed in the phelloderm and storage parenchyma cells of red potato (S. tuberosum L. cv. Rosalinde) tubers after administration of carboxyfluorescein diacetate stain. Endogenous esterases cleaved off acetic groups to release membrane-unpermeable green fluorescing carboxyfluorescein which accumulated differentially in particular cell compartments. The intensive green fluorescence of carboxyfluorescein exhibited highly branched stromules (stroma-filled plastid tubular projections of the plastid envelope) and allowed distinguishing them within cytoplasmic strands of the phelloderm cells. Stromules (1) were directed towards the nucleus or (2) penetrated the whole cells through the cytoplasmic bands of highly vacuolated phelloderm cells. Those directed towards the nucleus were flattened and adhered to the nuclear envelope. Stromule-like interconnections between two parts of the same plastids (isthmuses) were also observed. We also documented the formation of another type of the stroma-filled plastid outgrowths, referred to here as protrusions, which differed from previously defined stromules in both morphology and esterase activity. Unlike stromules, the protrusions were found to be associated with developmental processes leading to starch accumulation in the storage parenchyma cells. These results strongly suggest that stromules and protrusions exhibit esterase activity. This has been demonstrated for the first time. Morphological and biochemical features as well as possible functions of stromules and protrusions are discussed below.


Assuntos
Fluoresceínas , Corantes Fluorescentes , Tubérculos/ultraestrutura , Plastídeos/ultraestrutura , Solanum tuberosum/ultraestrutura , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Tubérculos/metabolismo , Plastídeos/metabolismo , Solanum tuberosum/crescimento & desenvolvimento , Coloração e Rotulagem
2.
Mol Plant ; 7(7): 1151-66, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24874867

RESUMO

Mitogen-activated protein kinase (MAPK) pathways regulate signal transduction from different cellular compartments and from the extracellular environment to the nucleus in all eukaryotes. One of the best-characterized MAPKs in Arabidopsis thaliana is MPK4, which was shown to be a negative regulator of systemic-acquired resistance. The mpk4 mutant accumulates salicylic acid (SA), possesses constitutive expression of pathogenesis-related (PR) genes, and has an extremely dwarf phenotype. We show that suppression of SA and phylloquinone synthesis in chloroplasts by knocking down the ICS1 gene (by crossing it with the ics1 mutant) in the mpk4 mutant background did not revert mpk4-impaired growth. However, it did cause changes in the photosynthetic apparatus and severely impaired the quantum yield of photosystem II. Transmission microscopy analysis revealed that the chloroplasts' structure was strongly altered in the mpk4 and mpk4/ics1 double mutant. Analysis of reactive oxygen species (ROS)-scavenging enzymes expression showed that suppression of SA and phylloquinone synthesis in the chloroplasts of the mpk4 mutant caused imbalances in ROS homeostasis which were more pronounced in mpk4/ics1 than in mpk4. Taken together, the presented results strongly suggest that MPK4 is an ROS/hormonal rheostat hub that negatively, in an SA-dependent manner, regulates immune defenses, but at the same time positively regulates photosynthesis, ROS metabolism, and growth. Therefore, we concluded that MPK4 is a complex regulator of chloroplastic retrograde signaling for photosynthesis, growth, and immune defenses in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fotossíntese , Ácido Salicílico/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Regulação da Expressão Gênica de Plantas , Homeostase , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
3.
J Exp Bot ; 64(12): 3669-79, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23956412

RESUMO

Isochorismate synthase 1 (ICS1) is a crucial enzyme in the salicylic acid (SA) synthesis pathway, and thus it is important for immune defences. The ics1 mutant is used in experiments on plant-pathogen interactions, and ICS1 is required for the appropriate hypersensitive disease defence response. However, ICS1 also takes part in the synthesis of phylloquinone, which is incorporated into photosystem I and is an important component of photosynthetic electron transport in plants. Therefore, photosynthetic and molecular analysis of the ics1 mutant in comparison with wild-type and SA-degrading transgenic NahG Arabidopsis thaliana plants was performed. Photosynthetic parameters in the ics1 mutant, when compared with the wild type, were changed in a manner observed previously for state transition-impaired plants (STN7 kinase recessive mutant, stn7). In contrast to stn7, deregulation of the redox status of the plastoquinone pool (measured as 1-q p) in ics1 showed significant variation depending on the leaf age. SA-degrading transgenic NahG plants targeted to the cytoplasm or chloroplasts displayed normal (wild-type-like) state transition. However, ics1 plants treated with a phylloquinone precursor displayed symptoms of phenotypic reversion towards the wild type. ics1 also showed altered thylakoid structure with an increased number of stacked thylakoids per granum which indicates the role of ICS1 in regulation of state transition. The results presented here suggest the role of ICS1 in integration of the chloroplast ultrastructure, the redox status of the plastoquinone pool, and organization of the photosystems, which all are important for optimal immune defence and light acclimatory responses.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Transferases Intramoleculares/genética , Fotossíntese , Vitamina K 1/metabolismo , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Transporte de Elétrons , Transferases Intramoleculares/metabolismo , Luz , Oxirredução , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Ácido Salicílico/metabolismo , Tilacoides/enzimologia , Tilacoides/metabolismo
4.
Symbiosis ; 58(1-3): 183-190, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23482425

RESUMO

Lucifer Yellow (LYCH) and carboxyfluorescein (CF) served in Medicago truncatula roots and root nodules as the markers of apoplastic and symplastic transport, respectively. The aim of this study was to understand better the water and photoassimilate translocation pathways to and within nodules. The present study shows that in damaged roots LYCH moves apoplastically through the vascular elements but it was not detected within the nodule vascular bundles. In intact roots, the outer cortex was strongly labeled but the dye was not present in the interior of intact root nodules. The inwards movement of LYCH was halted in the endodermis. When the dye was introduced into a damaged nodule by infiltration, it spread only in the cell walls and the intercellular spaces up to the inner cortex. Our research showed that in addition to the outer cortex, the inner tissue containing bacteroid-infected cells is also an apoplastic domain. Our results are consistent with the hypothesis that nodules do not receive water from the xylem but get it and photoassimilates from phloem. A comparison between using LYCH and LYCH followed by glutaraldehyde fixation indicates that glutaraldehyde is responsible for fluorescence of some organelles within root nodule cells. The influence of the fixation on nodule fluorescence has not been reported before but must be taken into consideration to avoid errors. An attempt was made to follow carboxyfluorescein (6(5) CF) translocation from leaflets into roots and root nodules. In root nodules, CF was present in all or a couple of vascular bundles (VB), vascular endodermis and some adjacent cells. The leakage of CF from the VBs was observed, which suggests symplastic continuity between the VBs and the nodule parenchyma. The lack of CF in inner tissue was observed. Therefore, photoassimilate entry to the infected region of nodule must involve an apoplastic pathway.

5.
Symbiosis ; 54(1): 1-16, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21957326

RESUMO

Different models have been proposed to explain the operation of oxygen diffusion barrier in root nodules of leguminous plants. This barrier participates in protection of oxygen-sensitive nitrogenase, the key enzyme in nitrogen fixation, from inactivation. Details concerning structural and biochemical properties of the barrier are still lacking. Here, the properties of pea root nodule cortical cells were examined under normal conditions and after shoot removal. Microscopic observations, including neutral red staining and epifluorescence investigations, showed that the inner and outer nodule parenchyma cells exhibit different patterns of the central vacuole development. In opposition to the inner part, the outer parenchyma cells exhibited vacuolar shrinkage and formed cell wall infoldings. Shoot removal induced vacuolar shrinkage and formation of infoldings in the inner parenchyma and uninfected cells of the symbiotic tissue, as well. It is postulated that cells which possess shrinking vacuoles are sensitive to the external osmotic pressure. The cells can give an additional resistance to oxygen diffusion by release of water to the intercellular spaces.Immunolocalization studies proved higher expression of endo-ß-1,4-glucanases within expanding cells of the outer cortex of pea nodules comparing with nodule endodermis or nodule parenchyma, so it is suggested that (1) endo-glucanases are involved in growth related modifications of cell walls and (2) enlarged cells decrease nodule conductance to oxygen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...