Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37108119

RESUMO

Sporadic Alzheimer's disease (sAD) represents a serious and growing worldwide economic and healthcare burden. Almost 95% of current AD patients are associated with sAD as opposed to patients presenting with well-characterized genetic mutations that lead to AD predisposition, i.e., familial AD (fAD). Presently, the use of transgenic (Tg) animals overexpressing human versions of these causative fAD genes represents the dominant research model for AD therapeutic development. As significant differences in etiology exist between sAD and fAD, it is perhaps more appropriate to develop novel, more sAD-reminiscent experimental models that would expedite the discovery of effective therapies for the majority of AD patients. Here we present the oDGal mouse model, a novel model of sAD that displays a range of AD-like pathologies as well as multiple cognitive deficits reminiscent of AD symptomology. Hippocampal cognitive impairment and pathology were delayed with N-acetyl-cysteine (NaC) treatment, which strongly suggests that reactive oxygen species (ROS) are the drivers of downstream pathologies such as elevated amyloid beta and hyperphosphorylated tau. These features demonstrate a desired pathophenotype that distinguishes our model from current transgenic rodent AD models. A preclinical model that presents a phenotype of non-genetic AD-like pathologies and cognitive deficits would benefit the sAD field, particularly when translating therapeutics from the preclinical to the clinical phase.


Assuntos
Doença de Alzheimer , Transtornos Cognitivos , Camundongos , Humanos , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Memória , Animais Geneticamente Modificados , Modelos Animais de Doenças
2.
Sci Rep ; 8(1): 3902, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29500363

RESUMO

Disruption of the insulin-PI3K-Akt signalling pathway in kidney podocytes causes endoplasmic reticulum (ER) stress, leading to podocyte apoptosis and proteinuria in diabetic nephropathy. We hypothesised that by improving insulin sensitivity we could protect podocytes from ER stress. Here we use established activating transcription factor 6 (ATF6)- and ER stress element (ERSE)-luciferase assays alongside a novel high throughput imaging-based C/EBP homologous protein (CHOP) assay to examine three models of improved insulin sensitivity. We find that by improving insulin sensitivity at the level of the insulin receptor (IR), either by IR over-expression or by knocking down the negative regulator of IR activity, protein tyrosine-phosphatase 1B (PTP1B), podocytes are protected from ER stress caused by fatty acids or diabetic media containing high glucose, high insulin and inflammatory cytokines TNFα and IL-6. However, contrary to this, knockdown of the negative regulator of PI3K-Akt signalling, phosphatase and tensin homolog deleted from chromosome 10 (PTEN), sensitizes podocytes to ER stress and apoptosis, despite increasing Akt phosphorylation. This indicates that protection from ER stress is conferred through not just the PI3K-Akt pathway, and indeed we find that inhibiting the MEK/ERK signalling pathway rescues PTEN knockdown podocytes from ER stress.


Assuntos
Estresse do Retículo Endoplasmático , Fosfatidilinositol 3-Quinases/metabolismo , Podócitos/fisiologia , Receptor de Insulina/metabolismo , Transdução de Sinais , Animais , Apoptose , Células Cultivadas , Insulina/metabolismo , Camundongos , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação , Podócitos/citologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo
3.
PLoS One ; 11(1): e0146366, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26730956

RESUMO

Autism spectrum disorders (ASDs) are a group of neurodevelopmental afflictions characterized by repetitive behaviors, deficits in social interaction, and impaired communication skills. For most ASD patients, the underlying causes are unknown. Genetic mutations have been identified in about 25 percent of ASD cases, including mutations in epigenetic regulators, suggesting that dysregulated chromatin or DNA function is a critical component of ASD. Mutations in the histone acetyltransferase CREB binding protein (CBP, CREBBP) cause Rubinstein-Taybi Syndrome (RTS), a developmental disorder that includes ASD-like symptoms. Recently, genomic studies involving large numbers of ASD patient families have theoretically modeled CBP and its paralog p300 (EP300) as critical hubs in ASD-associated protein and gene interaction networks, and have identified de novo missense mutations in highly conserved residues of the CBP acetyltransferase and CH1 domains. Here we provide animal model evidence that supports this notion that CBP and its CH1 domain are relevant to autism. We show that mice with a deletion mutation in the CBP CH1 (TAZ1) domain (CBPΔCH1/ΔCH1) have an RTS-like phenotype that includes ASD-relevant repetitive behaviors, hyperactivity, social interaction deficits, motor dysfunction, impaired recognition memory, and abnormal synaptic plasticity. Our results therefore indicate that loss of CBP CH1 domain function contributes to RTS, and possibly ASD, and that this domain plays an essential role in normal motor function, cognition and social behavior. Although the key physiological functions affected by ASD-associated mutation of epigenetic regulators have been enigmatic, our findings are consistent with theoretical models involving CBP and p300 in ASD, and with a causative role for recently described ASD-associated CBP mutations.


Assuntos
Transtorno Autístico/genética , Proteína de Ligação a CREB/genética , Histona Acetiltransferases/genética , Mutação , Síndrome de Rubinstein-Taybi/genética , Análise de Variância , Animais , Transtorno Autístico/enzimologia , Transtorno Autístico/fisiopatologia , Sítios de Ligação/genética , Proteína de Ligação a CREB/metabolismo , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/fisiopatologia , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Histona Acetiltransferases/metabolismo , Humanos , Potenciação de Longa Duração/genética , Potenciação de Longa Duração/fisiologia , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/genética , Transtornos da Memória/fisiopatologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Atividade Motora/fisiologia , Fenótipo , Síndrome de Rubinstein-Taybi/enzimologia , Síndrome de Rubinstein-Taybi/fisiopatologia , Comportamento Social
4.
Development ; 141(3): 538-47, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24449835

RESUMO

The liver has multiple functions that preserve homeostasis. Liver diseases are debilitating, costly and often result in death. Elucidating the developmental mechanisms that establish the liver's architecture or generate the cellular diversity of this organ should help advance the prevention, diagnosis and treatment of hepatic diseases. We previously reported that migration of early hepatic precursors away from the gut epithelium requires the activity of the homeobox gene Prox1. Here, we show that Prox1 is a novel regulator of cell differentiation and morphogenesis during hepatogenesis. Prox1 ablation in bipotent hepatoblasts dramatically reduced the expression of multiple hepatocyte genes and led to very defective hepatocyte morphogenesis. As a result, abnormal epithelial structures expressing hepatocyte and cholangiocyte markers or resembling ectopic bile ducts developed in the Prox1-deficient liver parenchyma. By contrast, excessive commitment of hepatoblasts into cholangiocytes, premature intrahepatic bile duct morphogenesis, and biliary hyperplasia occurred in periportal areas of Prox1-deficient livers. Together, these abnormalities indicate that Prox1 activity is necessary to correctly allocate cell fates in liver precursors. These results increase our understanding of differentiation anomalies in pathological conditions and will contribute to improving stem cell protocols in which differentiation is directed towards hepatocytes and cholangiocytes.


Assuntos
Ductos Biliares/patologia , Linhagem da Célula , Deleção de Genes , Hepatócitos/metabolismo , Hepatócitos/patologia , Células-Tronco/metabolismo , Proteínas Supressoras de Tumor/deficiência , Envelhecimento/metabolismo , Animais , Animais Recém-Nascidos , Contagem de Células , Linhagem da Célula/genética , Coristoma/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fator 4 Nuclear de Hepatócito/metabolismo , Proteínas de Homeodomínio/metabolismo , Fígado/embriologia , Fígado/metabolismo , Camundongos , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais/genética , Células-Tronco/patologia , Fator de Crescimento Transformador beta/metabolismo , Proteínas Supressoras de Tumor/metabolismo
5.
Aging (Albany NY) ; 4(4): 247-55, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22511639

RESUMO

Protein lysine acetyltransferases (HATs or PATs) acetylate histones and other proteins, and are principally modeled as transcriptional coactivators. CREB binding protein (CBP, CREBBP) and its paralog p300 (EP300) constitute the KAT3 family of HATs in mammals, which has mostly unique sequence identity compared to other HAT families. Although studies in yeast show that many histone mutations cause modest or specific phenotypes, similar studies are impractical in mammals and it remains uncertain if histone acetylation is the primary physiological function for CBP/p300. Nonetheless, CBP and p300 mutations in humans and mice show that these coactivators have important roles in development, physiology, and disease, possibly because CBP and p300 act as network "hubs" with more than 400 described protein interaction partners. Analysis of CBP and p300 mutant mouse fibroblasts reveals CBP/p300 are together chiefly responsible for the global acetylation of histone H3 residues K18 and K27, and contribute to other locus-specific histone acetylation events. CBP/p300 can also be important for transcription, but the recruitment of CBP/p300 and their associated histone acetylation marks do not absolutely correlate with a requirement for gene activation. Rather, it appears that target gene context (e.g. DNA sequence) influences the extent to which CBP and p300 are necessary for transcription.


Assuntos
Fibroblastos/metabolismo , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Regiões Promotoras Genéticas/fisiologia , Transcrição Gênica , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Animais , Expressão Gênica , Histona Acetiltransferases/genética , Histonas/genética , Humanos , Camundongos , Mutação , Ativação Transcricional , Fatores de Transcrição de p300-CBP/genética
6.
Cell Metab ; 14(2): 219-30, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21803292

RESUMO

Opposing activities of acetyltransferases and deacetylases help regulate energy balance. Mice heterozygous for the acetyltransferase CREB binding protein (CBP) are lean and insulin sensitized, but how CBP regulates energy homeostasis is unclear. In one model, the main CBP interaction with the glucagon-responsive factor CREB is not limiting for liver gluconeogenesis, whereas a second model posits that Ser436 in the CH1 (TAZ1) domain of CBP is required for insulin and the antidiabetic drug metformin to inhibit CREB-mediated liver gluconeogenesis. Here we show that conditional knockout of CBP in liver does not decrease fasting blood glucose or gluconeogenic gene expression, consistent with the first model. However, mice in which the CBP CH1 domain structure is disrupted by deleting residues 342-393 (ΔCH1) are lean and insulin sensitized, as are p300ΔCH1 mutants. CBP(ΔCH1/ΔCH1) mice remain metformin responsive. An intact CH1 domain is thus necessary for normal energy storage, but not for the blood glucose-lowering actions of insulin and metformin.


Assuntos
Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Metabolismo Energético , Magreza/enzimologia , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo , Animais , Glicemia/genética , Células Cultivadas , Dieta , Feminino , Gluconeogênese/genética , Insulina/metabolismo , Masculino , Metformina/metabolismo , Camundongos , Camundongos Knockout , Magreza/genética
8.
Epigenetics ; 5(1): 9-15, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20110770

RESUMO

One general principle of gene regulation is that DNA-binding transcription factors modulate transcription by recruiting cofactors that modify histones and chromatin structure. A second implicit principle is that a particular cofactor is necessary at all the target genes where the cofactor is recruited. Increasingly, these principles do not appear to be absolute, as experimentally defined relationships between transcription, cofactors and chromatin modification grow in complexity. The KAT3 histone acetyltransferases CREB binding protein (CBP) and p300 have at least 400 interacting protein partners, thereby acting as hubs in gene regulatory networks. Studies using mutant primary cells indicate that the occurrence of CBP and p300 at any given target gene sometimes correlates with, rather than dictates transcription. This suggests that there are unexpected levels of redundancy between CBP/p300 and other unrelated coactivators, or that CBP/p300 recruitment may sometimes be coincidental. A transcription factor may therefore recruit the same group of coactivators as part of its "toolbox", but it is the characteristics of the individual target gene that determine which coactivation "tools" are required for its transcription.


Assuntos
DNA/genética , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Animais , Cromatina/metabolismo , DNA/química , Redes Reguladoras de Genes , Histonas/metabolismo , Humanos , Modelos Biológicos , Modelos Genéticos , Família Multigênica , Mutação , Filogenia , Ligação Proteica , Transcrição Gênica
9.
J Clin Invest ; 115(4): 940-50, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15841180

RESUMO

Insulin receptor substrate 2 (Irs2) plays complex roles in energy homeostasis. We generated mice lacking Irs2 in beta cells and a population of hypothalamic neurons (RIPCreIrs2KO), in all neurons (NesCreIrs2KO), and in proopiomelanocortin neurons (POMCCreIrs2KO) to determine the role of Irs2 in the CNS and beta cell. RIPCreIrs2KO mice displayed impaired glucose tolerance and reduced beta cell mass. Overt diabetes did not ensue, because beta cells escaping Cre-mediated recombination progressively populated islets. RIPCreIrs2KO and NesCreIrs2KO mice displayed hyperphagia, obesity, and increased body length, which suggests altered melanocortin action. POMCCreIrs2KO mice did not display this phenotype. RIPCreIrs2KO and NesCreIrs2KO mice retained leptin sensitivity, which suggests that CNS Irs2 pathways are not required for leptin action. NesCreIrs2KO and POMCCreIrs2KO mice did not display reduced beta cell mass, but NesCreIrs2KO mice displayed mild abnormalities of glucose homeostasis. RIPCre neurons did not express POMC or neuropeptide Y. Insulin and a melanocortin agonist depolarized RIPCre neurons, whereas leptin was ineffective. Insulin hyperpolarized and leptin depolarized POMC neurons. Our findings demonstrate a critical role for IRS2 in beta cell and hypothalamic function and provide insights into the role of RIPCre neurons, a distinct hypothalamic neuronal population, in growth and energy homeostasis.


Assuntos
Metabolismo Energético , Homeostase , Hipotálamo/metabolismo , Ilhotas Pancreáticas/metabolismo , Neurônios/metabolismo , Fosfoproteínas/metabolismo , Animais , Peso Corporal , Eletrofisiologia , Genótipo , Glucose/metabolismo , Hipotálamo/citologia , Insulina/administração & dosagem , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina , Peptídeos e Proteínas de Sinalização Intracelular , Ilhotas Pancreáticas/citologia , Leptina/administração & dosagem , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Fosfoproteínas/genética , Pró-Opiomelanocortina/metabolismo , Receptor de Insulina/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...