Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 356: 124322, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38844036

RESUMO

Arsenic is a hazardous element found in water sources, and removing it is crucial for ensuring a safe environment and water quality. Iron-based metal oxides efficiently remove arsenic; however, their small particle sizes make separation from water difficult after arsenic removal. Furthermore, the growing global issue of polymer waste further complicates environmental concerns. Combining three-dimensional (3D) printing and adsorption technology by incorporating nanosized functional materials into supporting polymers offers a potential solution to address both challenges. In this study, we developed a 3D-printed adsorption material through the incorporation of synthesized Fe-Ni bimetallic particles into a supporting polymer using selective laser sintering (SLS) technology. This adsorbent's properties were examined through scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and zeta potential. Furthermore, its performance in removing As(III) and As(V), even at trace levels, was assessed under varied conditions. The 3D-printed adsorbent demonstrated excellent removal of As(III) at pH 6, and As(V) at pH 4, lowering their concentration below 10 µg/L, thereby adhering to the limit established by the World Health Organization (WHO). Both As(III) and As(V) fitted the Freundlich isotherm and pseudo-second-order model, suggesting potential heterogeneous and chemisorption processes. FT-IR indicated that the exchange of the -OH group of Fe-OH with oxyanions of As(III) and As(V) could be the adsorption mechanism. Additionally, thermodynamic evaluation unveiled an endothermic and non-spontaneous adsorption reaction. The 3D-printed adsorbent exhibited excellent reusability across recurring adsorption cycles. The combination of SLS 3D printing with Fe-Ni bimetallic particles produces structures that retain their functionality in removing both arsenic species present in water. This indicates the potential of the 3D-printed adsorbent for effective treatment of arsenic-contaminated water, offering remedies to challenges like handling small particle sizes, mitigating polymer waste, and addressing environmental concerns.

2.
Heliyon ; 10(6): e27766, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38515676

RESUMO

Industrial and mining wastewater, along with copper tailings, are typically highly acidic and contain copper and other heavy metals, which may contaminate and damage the environment. Copper (Cu) is, however, a valuable metal, making its removal and recovery from such wastewater and tailings environmentally and economically advantageous. Chelating ion exchange resins featuring bis-picolylamine functional groups are especially suitable for application requiring selective recovery of Cu(II) from highly acidic media. In this study, and for the first time, the kinetics, binding capacity and selectivity of Lewatit MDS TP 220 chelating resin towards Cu(II) are reported. The resin was characterized by Zeta potential, scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Factors including pH, initial concentration, contact time, temperature, and selectivity were investigated to assess the adsorption performance of the chelating resin. The adsorption kinetics tests revealed fast adsorption within the first 5-30 min and fitted the pseudo-second-order model, signifying chemisorption process. The adsorption isotherm followed the Langmuir model, implying monolayer adsorption process. The maximum adsorption capacity (qm) for Cu(II) determined by the Langmuir model was 103.9 mg/g. The adsorption thermodynamics showed an endothermic and spontaneous adsorption. FTIR and XPS studies suggested coordination or chelation as the possible adsorption mechanism. Lewatit MDS TP 220 exhibited excellent Cu(II) adsorption, desorption with 2 M ammonium hydroxide (NH4OH), and selectivity in multi-metal ions solution. Additionally, the resin demonstrated excellent reusability after five regeneration steps. This chelating resin is a potential adsorbent for effective and recurrent recovery of Cu(II) from copper tailings and wastewater, thereby contributing to environmental remediation.

3.
Sci Total Environ ; 919: 171000, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38365021

RESUMO

The exponential growth in textile fiber production and commensurate release of textile waste-based effluents into the environment has significant impacts on human wellbeing and the long-term planetary health. To abate these negative impacts and promote resource circularity, efforts are being made to recycle these waste materials via conversion into adsorbents for water decontamination. This review critically examines plant- and regenerated cellulose-based fibers for removing water pollutants such as heavy metals, dyes, pharmaceutical and petrochemical wastes. The review reveals that chemical modification reactions such as grafting, sulfonation, carboxymethylation, amination, amidoximation, xanthation, carbon activation, and surface coating are normally employed, and the adsorption mechanisms often involve Van der Waals attraction, electrostatic interaction, complexation, chelation, ion exchange, and precipitation. Furthermore, the adsorption processes and thus the adsorption mechanisms are influenced by factors such as surface properties of adsorbents, pollutant characteristics including composition, porosity/pore size distribution, specific surface area, hydrophobicity/hydrophobicity, and molecular interactions. Besides, feasibility of the approaches in terms of handling and reuse, environmental fate, and economic impact was evaluated, in addition to the performances of the adsorbents, the prospects, and challenges. As current cost analysis is non-exhaustive, it is recommended that researchers focus on extensive cost analysis to fully appreciate the true cost effectiveness of employing these waste materials. In addition, more attention must be paid to potential chemical leaching, post-adsorption handling, and disposal. Based on the review, fiber precursors and textile fiber wastes are viable alternative adsorbents for sustainable water treatment and environmental management, and government entities must leverage on these locally accessible materials to promote recyclability and circularity.

4.
Waste Manag ; 177: 135-145, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325014

RESUMO

The surging affluent in society, concomitant with increasing global demand for electrical and electronic devices, has led to a sharp rise in e-waste generation. E-wastes contain significant amounts of precious metals, such as gold, which can be recovered and reused, thus reducing the environmental impact of mining new metals. Selective recovery using sustainable and cost-effective materials and methods is therefore vital. This study undertook a detailed evaluation of low-cost biomass-derived activated carbon (AC) for selective recovery of Au from simulated e-waste streams. Utilizing high-performance synthesized H2SO4-AC, the adsorption mechanisms were explicated through a combination of characterization techniques, i.e., FE-SEM, BET, TGA, XRD, FTIR, XPS, and DFT simulations to conceptualize the atomic and molecular level interactions. Optimization of coordination geometries between model H2SO4-AC and anionic complexes revealed the most stable coordination for AuCl4- (binding energy, Eb = -4064.15 eV). The Au selectivity was further enhanced by reduction of Au(III) to Au(0), as determined by XRD and XPS. The adsorption reaction was relatively fast (∼5h), and maximum Au uptake reached 1679.74 ± 37.66 mg/g (among highest), achieved through adsorption isotherm experiments. Furthermore, a mixture of 0.5 M thiourea/1 M HCl could effectively elute the loaded Au and regenerate the spent AC. This study presents radical attempts to examine in detail, the synergistic effects of H2SO4 activation on biomass-derived ACs for selective recovery of Au from complex mixtures. The paper therefore describes a novel approach for the selective recovery of Au from e-wastes using multifunctional biomass-derived H2SO4-AC.


Assuntos
Carvão Vegetal , Ouro , Biomassa , Ácidos Sulfúricos
5.
Chemosphere ; 325: 138418, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36925007

RESUMO

In recent years, polyelectrolyte-incorporated functional materials have emerged as novel adsorbents for effective remediation of pollutants in water and wastewater. Polyelectrolytes (PEs) are a special class of polymers with long chains of repeating charged moieties. Polyelectrolyte complexes (PECs) are obtained by mixing aqueous solutions of oppositely charged PEs. Herewith, this review discusses recent advances with respect to water and wastewater remediation using PE- and PEC-incorporated adsorbents. The review begins by highlighting some water resources, their pollution sources and available treatment techniques. Next, an overview of PEs and PECs is discussed, highlighting the evolving progress in their processing. Consequently, application of these materials in different facets of water and wastewater remediation, including heavy metal removal, precious metal and rare earth element recovery, desalination, dye and emerging micropollutant removal, are critically reviewed. For water and wastewater remediation, PEs and PECs are mostly applied either in their original forms, as composites or as morphologically-tunable complexes. PECs are deemed superior to other materials owing to their tunability for both cationic and anionic pollutants. Generally, natural and semi-synthetic PEs have been largely applied owing to their low cost, ready availability and eco-friendliness. Except dye removal and desalination of saline water, application of synthetic PEs and PECs is scanty, and hence requires more focus in future research.


Assuntos
Polímeros , Águas Residuárias , Polieletrólitos , Poluição Ambiental
6.
Sci Rep ; 11(1): 17836, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34497318

RESUMO

For the first time, a polyethyleneimine-impregnated alginate capsule (PEIIAC) with a high adsorption capacity is developed for the recovery of monovalent and trivalent gold from an acidic solution. The strategy results in a new type of adsorbent, polyethyleneimine impregnated alginate capsule (PEIIAC) with a core-shell structure having a large number of amine groups as cationic binding site, facilitating maximum uptake of anionic auric chloride. The maximum uptake of PEIIAC was 3078 and 929 mg/g for Au (III) and Au (I), respectively, are recordable compared to other reported adsorbents to date. The as-prepared material was executed to check the sorption efficacy for Au (III) and Au (I) in the pH range of 1-12. With an increment in pH, the uptake capacity for Au (III) increased, while the uptake capacity for Au (I) decreased. The FTIR, XRD, and XPS studies revealed that the gold adsorption mechanism includes ionic interactions and reduction, wherein the amine, hydroxyl, and carboxyl groups are involved. The capsule showed a higher adsorption efficiency than other reported sorbents, making the material applicable in acidic solutions for the recovery of Au (I) and Au (III).

7.
ACS Omega ; 6(20): 13057-13065, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34056455

RESUMO

The ion/molecular imprinting technique is an efficient method for developing materials with high adsorption selectivity. However, it is still difficult to obtain an imprinted adsorbent with desirably high selectivity when the preparation processes are not well designed and optimized. In this present work, a chitosan-based ion-imprinted adsorbent was optimally prepared through Box-Behnken experimental design to achieve desirably high selectivity for Pd anions (PdCl4 2-) from aqueous solutions with high acidity. The dosage of epichlorohydrin (ECH) used in the first and second steps of cross-linking as well as the pH of the imprinting reaction medium is likely one of the key factors affecting the selectivity of the synthesized ion-imprinted chitosan adsorbent, which were selected as factors in a three-level factorial Box-Behnken design. As a result, the effects of these three factors on Pd(II) selectivity were able to be described by using a second-order polynomial model with a high regression coefficient (R 2; 0.996). The obtained optimal conditions via the response surface methodology were 0.10% (v/v) of first cross-linking ECH, an imprinting pH of 1.0, and 1.00% of second cross-linking ECH. Competitive adsorption was performed to investigate the selectivities of the ion-imprinted chitosan adsorbents prepared under the optimal conditions. The selectivity coefficient of Pd(II) versus Pt(IV) (ßPd/Pt) of the Pd(II)-imprinted adsorbent was 115.83, much greater than that of the chitosan adsorbent without imprinting and various reported selective adsorbents. Therefore, the Box-Behnken design can be a useful method for optimizing the synthesis of ion-imprinted adsorbents with desirably high adsorptive selectivity for precious metals.

8.
Environ Res ; 192: 110271, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33002506

RESUMO

The disposal of bio-waste (e.g., Corynebacterium glutamicum) produced by the fermentation industry is a serious problem and has a negative impact on economic returns. Some fermentation waste can be recycled as livestock feed, but much cannot be used. Therefore, other recycling methods must be developed to increase its applications, for example, as an environmentally friendly adsorbent for the removal or recovery of chemicals. To broaden its application as an adsorbent, we carried out comprehensive experimental and theoretical analysis. From the experiments, adsorption affinity values between C. glutamicum and micropollutants were measured, and, based on the experimental values, we developed a predictive model. The experimental results reveal that the degree of adsorption is dependent on the structural properties of the micropollutants. In particular, the adsorbent has remarkable adsorption ability toward cations, whereas anionic and neutral compounds interact weakly with the adsorbent. In addition, we found that adsorption is affected by the sodium chloride concentration. Briefly, an increase in salt concentration increases the adsorption of anions, whereas the opposite behavior is observed for cations. In contrast, the adsorption of neutral compounds was not affected by the presence of salt. The modeling studies revealed that a linear free energy relationship model can be used to predict the adsorption affinity. Based on the developed model, we found that hydrogen-bond basicity, anionic coulombic interactions, and molecular volume are the main contributing factors to the adsorption model. However, to achieve the best predictability (a coefficient of determination (R2) of 0.902), additional parameters, such as the dipolarity/polarizability and dispersive interaction, should be included. This indicates that adsorption is a product of complex interactions.


Assuntos
Corynebacterium glutamicum , Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Adsorção , Cátions , Fermentação , Concentração de Íons de Hidrogênio , Cinética , Eliminação de Resíduos Líquidos
9.
J Hazard Mater ; 401: 123352, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32659579

RESUMO

Metal-containing wastes in aquatic environments lead to public health hazards and valuable resource lose. Metal-bearing wastewater must be treated to remove heavy metals or recover precious metals. To achieve these, target-tunable adsorbents that bind cationic and anionic metal species were developed through facile polyelectrolyte complexation using polyethylenimine (PEI) and polyacrylic acid (PAA). Utilizing the properties of the two polyelectrolytes and pKa variabilities, stable tunable adsorbents were fabricated in water without additional solvents. The homogenous complex adsorbents were strategically synthesized via dissolution in 0.1 M NaOH and drop-wise addition of 1 M HCl, followed by crosslinking with glutaraldehyde. Consequently, the adsorbents in alternating weight ratios of 4:1 and 1:4 (PEI:PAA) exhibited good tunability and adsorption properties. The maximum single metal adsorption capacities were 1609.7 ± 49.6 and 558.6 ± 9.67 mg/g for gold and cadmium, respectively. The pseudo-second-order model fitted the kinetics data more appropriately and was recognized as the rate controlling step. In a binary mixture, gold selectivity was observed to be influenced by adsorption-reduction mechanism, which was elucidated by XRD and XPS. Moreover, the adsorbents demonstrated NO3- sequestration properties, a feat deemed important for environmental remediation of nitrate ions. Finally, sequential separation was achieved with ethylenediaminetetraacetic acid (EDTA) and acidified thiourea.

10.
Environ Pollut ; 266(Pt 3): 115167, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32688197

RESUMO

Numerous studies have sought to address the extraction of metals from printed circuit boards by employing bioleaching process. However, separation and recovery of the bioleached metals have always been a bottleneck. Herein, we demonstrate effective recovery of bioleached Au and Cu via selective separation using ion exchange resins. pH-edge experiments revealed high affinity of Amberjet™ 4200 resin towards Au (adsorption capacity > 98%) over the entire pH range from pH 2-10, whereas Amberlite IRC-86 resin recorded very high Cu adsorption at around pH 5. Therefore, a two-step sequential process was designed for the effective separation and recovery of Au and Cu. In the 1st step, Au was completely recovered by using the Amberjet™ 4200 at the natural pH of 7.5. Subsequently, the Au-free solution was adjusted to pH 5 and Cu was recovered by using Amberlite IRC-86 (2nd step). Consequently, 98.7% Au and 78.9% Cu were successfully recovered. Therefore, this study provides a technical guideline for the selective recovery of Au and Cu from bioleached wastewater, which promotes effective waste minimization and efficient resource recovery.


Assuntos
Cobre , Ouro , Adsorção , Resinas de Troca Iônica , Águas Residuárias
11.
Waste Manag ; 113: 225-235, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32535374

RESUMO

In this study, banana peel (BP) and its derivatives after sequential extraction of biochemical components were evaluated for selective recovery of gold. In-depth instrumental characterizations including XPS, FTIR, XRD and HR-TEM were performed to understand the adsorption mechanisms. The biomass after lipid extraction, BP-L, demonstrated very good affinity and selectivity towards gold. In multi-metal systems containing 100 mg/L of Pt(IV), Au(III), Pd(II), Zn(II), Co(II), Ni(II) and Li(I), the selectivity coefficient increased from 978.45 in BP to 2034.70 in BP-L. Moreover, the equilibrium gold uptake was improved and reached 475.48 ± 3.08 mg/g owing to reduction-coupled adsorption mechanisms. The BP-L also showed improved gold nanoparticle formation properties that were pH-dependent. In a strategic adsorption-combined incineration process, metallic gold reaching 99.96% in purity was obtained. The BP and its derivative, BP-L have thus shown potentials for multiple applications in the areas of precious metal recovery and nanoscience.


Assuntos
Nanopartículas Metálicas , Musa , Adsorção , Ouro , Incineração
12.
Environ Sci Pollut Res Int ; 27(20): 24760-24771, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31925694

RESUMO

This study aimed to select a high-performance cation-exchange resin (CER) and estimate its uptake of positively ionized tricyclic antidepressants (TCAs), i.e., amitriptyline (AMI), imipramine (IMI), clomipramine (CLO), and desipramine (DES), which are frequently used, and detected in wastewater treatment systems. For the selection of the resin, the one-point check test of AMI in distilled water was examined using several CERs. As a result, the strong-acid polystyrene CER, Dowex 50WX4-200, was selected on the basis of its outstanding uptake of AMI. The maximum adsorption capacities of Dowex 50WX4-200 for removal of the TCAs ranged from 2.53 ± 0.20 mmol/g to 3.76 ± 0.12 mmol/g, which are significantly higher when compared with those of previously reported adsorbents. This is likely because the combination of electrostatic and π-π interactions between the TCAs and Dowex 50WX4-200 may lead to high uptakes of the TCAs. Additionally, the removal efficiency of DES as a representative of the TCAs was tested in actual wastewater system containing activated sludge and miscellaneous cations. Consequently, the removal efficiencies of the DES in distilled water, aerobic wastewater, and filtered wastewater were 95.68%, 77.99%, and 56.66%, respectively. It is interesting to note that the activated sludge could also contribute to adsorption of the DES, leading to increased removability, while the cations present in the wastewater acted as competing ions, decreasing the removal efficiency.


Assuntos
Amitriptilina , Antidepressivos Tricíclicos , Adsorção , Cátions , Imipramina
13.
Environ Sci Pollut Res Int ; 27(1): 1053-1068, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31814075

RESUMO

Dyes are colored compounds which are visible even at trace concentrations. Due to their recalcitrance and esthetic persistence, certain methods are unable to effectively eliminate them. So far, adsorptive treatment using activated carbons (ACs) is one of the most successful methods. In this study, we have employed orange peel (OP) as a cost-effective alternative to the expensive coal- and coir-based precursors to synthesize ACs for cationic methylene blue (MB) and anionic methyl orange (MO) dye adsorption. The pre-carbonized OP was activated via H2SO4, NaOH, KOH, ZnCl2, and H3PO4 to study the effects of activation reagents on dye removal efficiencies and mechanisms. Among several isotherm models employed to fit the adsorption data, the Langmuir and Sips models sufficiently estimated the maximum equilibrium uptakes close to the experimental values of 1012.10 ± 29.13, 339.82 ± 6.98, and 382.15 ± 8.62 mg/g, for ZnCl2-AC (MO), ZnCl2-AC (MB), and KOH-AC (MB), respectively. The adsorption mechanisms were suggested to involve electrostatic binding, pi-pi interactions, hydrogen bonding, and electron donor-acceptor reactions. Consequently, more than 99% removal efficiency was achieved from a laboratory organic wastewater sample bearing ~ 35 mg/L of MB. The results thus suggest that the synthesized ACs from agricultural waste have the tendencies to be applied to real dye wastewater treatment.


Assuntos
Carvão Vegetal/química , Corantes/química , Azul de Metileno/química , Adsorção , Agricultura , Compostos Azo , Citrus sinensis , Cinética , Águas Residuárias , Poluentes Químicos da Água/química
14.
Waste Manag ; 89: 141-153, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31079727

RESUMO

After consumption of the inner fleshy fruit, the banana peel like many other fruit peels is usually disposed of unprocessed. For sustainable development, agro-wastes including banana peels need to be converted into valuable products that will be beneficial to human and the environment. In this study, biochemical components including lipids, proteins and structural polysaccharides were sequentially extracted from banana peel, and the residuals were characterized by FE-SEM/EDX, FTIR, XRD, TGA/DSC, XPS and elemental analysis. Owing to rapid industrialization, toxic species such as metals and dyes are consistently released into the aquatic environments. Therefore, the residual biomass samples were evaluated for environmental remediation application. The adsorption performances were outstanding, with uptakes reaching 1034, 279 and 152 mg/g, for methylene blue, lead and platinum, respectively. This study thus suggests that sequential extraction and detailed characterization are useful for identification of key contributing components for development of high-performance agro-waste-based adsorbents for water treatment.


Assuntos
Recuperação e Remediação Ambiental , Musa , Purificação da Água , Adsorção , Biomassa
15.
Small ; 15(10): e1805242, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30690878

RESUMO

Precious metals such as palladium (Pd) and platinum (Pt) are marvelous materials in the fields of electronic and catalysis, but they are tapering day by day. Zr(IV)-based metal-organic frameworks (MOFs) are competent for their recovery, notably in harsh environments, while the general powder form limits their practical application. Porous MOF-based membranes with ultraefficient metal ion permeation, strong stability, and high selectivity are, therefore, strikingly preferred. Herein, a set of polymeric fibrous membranes incorporated with the UiO-66 series are fabricated; their adsorption/desorption capabilities toward Pd(II) and Pt(IV) are evaluated from strongly acidic solutions; and the MOF-polymer compatibilities are investigated. Polyurethane (PU)/UiO-66-NH2 showed strong acid resistance and high chemical stability, which are attributable to strong π-π interactions between PU and MOF nanoparticles with a high configuration of energy. The as-fabricated MOF membranes show extremely good adsorption/desorption performances without ruptures/coalitions of nanofibers or leak of MOF nanoparticles, and successfully display the efficacy in a gravity-driven or even continuous-flow system with good recycle performance and selectivity. The as-fabricated MOF membranes set an example of potential MOF-polymer compatibility for practical applications.

16.
J Hazard Mater ; 360: 529-535, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30145479

RESUMO

Due to high mobility and specific toxic actions of the ionizable pharmaceuticals in surface water with a normal range of pH, the pharmaceuticals should be removed before being discharged. Therefore, this study investigated the adsorptive interactions between cationic pharmaceuticals and a popular adsorbent (i.e., activated charcoal) frequently used in water treatment processes. For that, we performed isotherm experiments and then the results were plotted by Langmuir model to determine the adsorption affinity (b) and capacity (qm). Afterwards, to interpret the adsorption behaviors, two simple prediction models were developed based on quantitative structure-activity relationships (QSAR). In the modelling, molecular weight (MW), polar surface area (PSA), and octanol-water partitioning coefficient (log P) were used as model parameters. In the results, the combinations of these three parameters could predict the adsorption affinity and capacity in R2 of 0.85 and 0.80, respectively. The robustness of models was validated by leave-one-out cross-validation (Q2LOO) and the estimated Q2LOO values were 0.60 and 0.55 for the adsorption affinity and capacity, respectively, which are higher than the acceptability of standard i.e., 0.5.


Assuntos
Carvão Vegetal/química , Preparações Farmacêuticas/química , Poluentes Químicos da Água/química , 1-Octanol/química , Adsorção , Cátions , Modelos Teóricos , Relação Quantitativa Estrutura-Atividade , Água/química , Purificação da Água/métodos
17.
Sci Total Environ ; 634: 52-58, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29626770

RESUMO

TCAs are known to be toxicants and endocrine disrupting agents. Generally, after being used, TCAs are passed through wastewater treatment plants (WWTPs) to be treated. However, still trace amounts (ng/L to µg/L) of TCAs have been founded even in the treated water. Therefore, the aim of this study is to elucidate the environmental behaviors of TCAs in the sewage water from WWTPs (Jeonju, Korea). For the experiments, seven TCAs (amitriptyline, imipramine, clomipramine, desipramine, protriptyline, nortriptyline, and doxepin) were selected. Hydrolysibility, biodegradability, and adsorbability of the selected seven TCAs were evaluated. Based on the results, it was concluded that TCAs are not readily hydrolyzed in water and also not biodegraded by aerobic sludge. The 60% to 85% of TCAs were adsorbed immediately onto the activated sludge within 1 s via electrostatic and hydrophobic interactions. It was clearly observed that adsorption affinities were dependent on the types of activated sludge (i.e. anaerobic and aerobic sludge). The affinities of aerobic and anaerobic sludge towards the TCAs at trace concentrations e.g., 1 to 10 µg/L, were estimated to be in the range from 0.021 ±â€¯0.000 to 0.087 ±â€¯0.000 L/µg and from 0.001 ±â€¯0.000 to 0.108 ±â€¯0.001 L/µg, respectively.


Assuntos
Antidepressivos Tricíclicos/análise , Monitoramento Ambiental , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Disruptores Endócrinos/análise , República da Coreia
18.
J Hazard Mater ; 324(Pt B): 724-731, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27889182

RESUMO

Polyethyleneimine (PEI)-loaded chitosan hollow beads (CHBs) were fabricated through the ionotropic gelation process using sodium tripolyphosphate (TPP) as a counter polyanion. The CHBs were loaded with hydrophilic PEI in pre- and/or post-loading methods. Hence, the sorbent could possess a large number of amine groups which were able to function as the binding sites to recover platinum metal ions. The enhancement of the amine groups was confirmed by Fourier transform infrared spectroscopy (FTIR). Isotherm and kinetic studies were carried out to evaluate the sorption performance of the sorbents. The maximum Pt(IV) uptake by the PEI-loaded CHBs was estimated to be 815.2±72.6mg/g, which was much higher than that of a commercial ion exchange resin, Lewatit® MonoPlus TP214 (330.2±16.6mg/g). A sequential metal scavenging fill-and-draw process was operated using the PEI-loaded CHBs sorbents for ten cycles and the Pt(IV) recovery efficiency was kept above 97.4% even after the last cycle. These results indicated that the ionic polymer-loaded hydrogel hollow beads can be a novel platform to design high-performance sorbents able to recover and/or scavenge anionic precious metal ions even from trace metal solutions.

19.
J Hazard Mater ; 318: 79-89, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27399150

RESUMO

Poly(styrenesulfonic acid)-impregnated alginate capsule (PSSA-AC) was prepared using a simple fabrication process, and used for selective separation of Pd(II) and Pt(IV) from their mixture. Evaluation of the pH effect revealed that PSSA-AC had good Pd(II) selectivity especially when the pH was between 3 and 5 at which neutral species Pd(OH)2 are present. Experiments on metal penetration through the Ca(2+)-alginate film showed that anionic species hardly penetrate through the alginate film (acting as an ionic barrier). The selective sorption mechanism is proposed as the following steps: (1) selective penetration of the neutral Pd(OH)2 through the ionic barrier (Ca(2+)-alginate shell) and then (2) chelation reaction of the neutral Pd(OH)2 with the SO3(-) groups of PSSA in the core. The maximum Pd(II) uptake was 291.19±17.48mg/g, which was about 32 times higher than that of Pt(IV). The results of the sorption/desorption test indicated that the PSSA-AC has good reusability potential. Even through one cycle of sorption/desorption, Pd(II) and Pt(IV) were successfully separated from their mixture with significantly high purities of 98.65% Pd(II) and 98.71% Pt(IV). This study reports for the first time the feasibility and potential of ionic barrier-based sorbents as selective separation of precious metals which have different speciations.

20.
J Hazard Mater ; 299: 550-61, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26257295

RESUMO

In this study, an outstanding performance of chemically modified waste Lyocell for heavy metals treatment is reported. The sorbent, which was prepared by a simple and concise method, was able to bind heavy metals such as Pb(II), Cu(II) and Cd(II), with very high efficiencies. The binding mechanisms were studied through adsorption and standard characterization tests such as scanning electron microscopy, energy-dispersive spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction analyses. Adsorption kinetics was very fast and attained equilibrium within 5 min in all metals studied. The maximum single metal uptakes were 531.29±0.28 mg/g, 505.64±0.21 mg/g, and 123.08±0.26 mg/g for Pb(II), Cd(II) and Cu(II), respectively. In ternary metal systems, Cu(II) selectivity was observed and the underlying factors were discussed. The sorbent by its nature, could be very effective in treating large volumes of wastewater with the contact of very little amount.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...