Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Appl Genet ; 64(3): 377-391, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37120451

RESUMO

Increased grain yield (GY) is the primary breeding target of wheat breeders. We performed the genome-wide association study (GWAS) on 168 elite winter wheat lines from an ongoing breeding program to identify the main determinants of grain yield. Sequencing of Diversity Array Technology fragments (DArTseq) resulted in 19,350 single-nucleotide polymorphism (SNP) and presence-absence variation (PAV) markers. We identified 15 main genomic regions located in ten wheat chromosomes (1B, 2B, 2D, 3A, 3D, 5A, 5B, 6A, 6B, and 7B) that explained from 7.9 to 20.3% of the variation in grain yield and 13.3% of the yield stability. Loci identified in the reduced genepool are important for wheat improvement using marker-assisted selection. We found marker-trait associations between three genes involved in starch biosynthesis and grain yield. Two starch synthase genes (TraesCS2B03G1238800 and TraesCS2D03G1048800) and a sucrose synthase gene (TraesCS3D03G0024300) were found in regions of QGy.rut-2B.2, QGy.rut-2D.1, and QGy.rut-3D, respectively. These loci and other significantly associated SNP markers found in this study can be used for pyramiding favorable alleles in high-yielding varieties or to improve the accuracy of prediction in genomic selection.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Triticum/genética , Melhoramento Vegetal , Mapeamento Cromossômico , Fenótipo , Grão Comestível/genética , Polimorfismo de Nucleotídeo Único/genética
3.
J Appl Genet ; 64(2): 217-229, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36595165

RESUMO

Investigating genetic structure and diversity is crucial for the rye hybrid breeding strategy, leading to improved plant productivity and adaptation. The present study elucidated the population structure and genetic diversity of 188 rye accessions, comprising 94 pollen fertility restoration lines (RF) and 94 cytoplasmic male-sterile (CMS) lines with Pampa sterilizing cytoplasm using SNP and silicoDArT markers from the diversity array technology (DArT)-based sequencing platform (DArTseq). Expected heterozygosity (He) and Shanon's diversity (I) indexes varied slightly between marker systems and groups of germplasms (He = 0.34, I = 0.51 for RF and CMS lines genotyped using SNPs; He = 0.31, I = 0.48, and He = 0.35, I = 0.53 for RF and CMS using silicoDArTs, respectively). ANOVA indicated moderate variation (7%) between RF and CMS breeding materials. The same parameter varied when chromosome-assigned markers were used and ranged from 5.8% for 5R to 7.4% for 4R. However, when silicoDArT markers were applied, the respective values varied from 6.4% (1R) to 8.2% (3R and 4R). The model-based (Bayesian) population structure analysis based on the total marker pool identified two major subpopulations for the studied rye germplasm. The first one (P1) encompasses 93 RF accessions, and the second one (P2) encompasses 94 CMS and one RF accession. However, a similar analysis related to markers assigned to selected chromosomes failed to put plant materials into any of the populations in the same way as the total marker pool. Furthermore, the differences in grouping depended on marker types used for analysis.


Assuntos
Polimorfismo de Nucleotídeo Único , Secale , Secale/genética , Teorema de Bayes , Melhoramento Vegetal , Marcadores Genéticos , Citoplasma
4.
J Appl Genet ; 64(1): 37-53, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36322376

RESUMO

Babia Góra massif is the only site of occurrence of the Cerastium alpinum L. in Poland, an arctic-alpine perennial plant with a wide distribution in North America, northwestern Asia, and Europe. To determine whether the isolated Polish populations are genetically distinct, we have performed an evaluation of C. alpinum from Babia Góra with the use of iPBS markers. A total number of 133 individuals of C. alpinum from seven populations representing four localizations of the species were analyzed, i.e., from Babia Góra (Poland), Alps (Switzerland), Nuolja massif (Sweden), and Kaffiøyra (Svalbard, Norway). Genetic analysis of all C. alpinum samples using eight PBS primers identified 262 bands, 79.4% of which were polymorphic. iPBS markers revealed low genetic diversity (average He = 0.085) and high population differentiation (FST = 0.617). AMOVA results confirmed that the majority of the genetic variation (62%) was recorded among populations. The grouping revealed by PCoA showed that C. alpinum from Svalbard is the most diverged population, C. alpinum from Switzerland and Sweden form a pair of similar populations, whereas C. alpinum from the Babia Góra form a heterogeneous group of four populations. Results of isolation by distance analysis suggested that the spatial distance is the most probable cause of the observed differentiation among populations. Although significant traces of a bottleneck effect were noted for all populations of C. alpinum from Babia Góra, the populations still maintain a low but significant level of genetic polymorphism. These results are of great importance for developing conservation strategies for this species in Poland.


Assuntos
Caryophyllaceae , Espécies em Perigo de Extinção , Variação Genética , Caryophyllaceae/genética , Europa (Continente) , Variação Genética/genética , Polônia , Polimorfismo Genético
5.
Cells ; 11(17)2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36078107

RESUMO

The biological improvement of triticale, a cereal of increasing importance in agriculture, may be accelerated via the production of doubled haploid lines using in vitro culture. Among the relevant factors affecting the culture efficiency are Cu(II) or Ag(I) acting, e.g., as cofactors of enzymes. The copper ions are known to positively affect green plant regeneration efficiency. However, the biochemical basis, mainly its role in the generation of in vitro-induced genetic and epigenetic variation and green plant regeneration efficiency, is not well understood. Here, we employed structural equation modeling to evaluate the relationship between de novo DNA methylation affecting the asymmetric context of CHH sequences, the methylation-sensitive Amplified Fragment Length Polymorphism related sequence variation, and the concentration of Cu(II) and Ag(I) ions in induction media, as well as their effect on S-adenosyl-L-methionine perturbations, observed using FTIR spectroscopy, and the green plant regeneration efficiency. Our results allowed the construction of a theory-based model reflecting the biological phenomena associated with green plant regeneration efficiency. Furthermore, it is shown that Cu(II) ions in induction media affect plant regeneration, and by manipulating their concentration, the regeneration efficiency can be altered. Additionally, S-adenosyl-L-methionine is involved in the efficiency of green plant regeneration through methylation of the asymmetric CHH sequence related to de novo methylation. This shows that the Yang cycle may impact the production of green regenerants.


Assuntos
S-Adenosilmetionina , Triticale , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Metionina/genética , Metilação , S-Adenosilmetionina/metabolismo , Triticale/genética , Triticale/metabolismo
6.
Cells ; 12(1)2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36611956

RESUMO

Green plant regeneration efficiency (GPRE) via in vitro anther culture results from biochemical pathways and cycle dysfunctions that may affect DNA and histone methylation, with gene expression influencing whole cell functioning. The reprogramming from gametophytic to sporophytic fate is part of the phenomenon. While DNA methylation and sequence changes related to the GPRE have been described, little attention was paid to the biochemical aspects of the phenomenon. Furthermore, only a few theoretical models that describe the complex relationships between biochemical aspects of GPRE and the role of Cu(II) ions in the induction medium and as cofactors of enzymatic reactions have been developed. Still, none of these models are devoted directly to the biochemical level. Fourier transform infrared (FTIR) spectroscopy was used in the current study to analyze triticale regenerants derived under various in vitro tissue culture conditions, including different Cu(II) and Ag(I) ion concentrations in the induction medium and anther culture times. The FTIR spectra of S-adenosyl-L-methionine (SAM), glutathione, and pectins in parallel with the Cu(II) ions, as well as the evaluated GPRE values, were put into the structural equation model (SEM). The data demonstrate the relationships between SAM, glutathione, pectins, and Cu(II) in the induction medium and how they affect GPRE. The SEM reflects the cell functioning under in vitro conditions and varying Cu(II) concentrations. In the presented model, the players are the Krebs and Yang cycles, the transsulfuration pathway controlled by Cu(II) ions acting as cofactors of enzymatic reactions, and the pectins of the primary cell wall.


Assuntos
Triticale , Triticale/genética , Metilação de DNA , Modelos Teóricos , Glutationa , Íons
7.
Cells ; 10(10)2021 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-34685752

RESUMO

The process of anther culture involves numerous abiotic stresses required for cellular reprogramming, microspore developmental switch, and plant regeneration. These stresses affect DNA methylation patterns, sequence variation, and the number of green plants regenerated. Recently, in barley (Hordeum vulgare L.), mediation analysis linked DNA methylation changes, copper (Cu2+) and silver (Ag+) ion concentrations, sequence variation, ß-glucans, green plants, and duration of anther culture (Time). Although several models were used to explain particular aspects of the relationships between these factors, a generalized complex model employing all these types of data was not established. In this study, we combined the previously described partial models into a single complex model using the structural equation modeling approach. Based on the evaluated model, we demonstrated that stress conditions (such as starvation and darkness) influence ß-glucans employed by cells for glycolysis and the tricarboxylic acid cycle. Additionally, Cu2+ and Ag+ ions affect DNA methylation and induce sequence variation. Moreover, these ions link DNA methylation with green plants. The structural equation model also showed the role of time in relationships between parameters included in the model and influencing plant regeneration via anther culture. Utilization of structural equation modeling may have both scientific and practical implications, as it demonstrates links between biological phenomena (e.g., culture-induced variation, green plant regeneration and biochemical pathways), and provides opportunities for regulating these phenomena for particular biotechnological purposes.


Assuntos
Flores/crescimento & desenvolvimento , Variação Genética , Hordeum/genética , Hordeum/fisiologia , Modelos Biológicos , Regeneração/fisiologia , Técnicas de Cultura de Tecidos , Sequência de Bases
8.
Int J Mol Sci ; 22(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299165

RESUMO

In vitro tissue culture plant regeneration is a complicated process that requires stressful conditions affecting the cell functioning at multiple levels, including signaling pathways, transcriptome functioning, the interaction between cellular organelles (retro-, anterograde), compounds methylation, biochemical cycles, and DNA mutations. Unfortunately, the network linking all these aspects is not well understood, and the available knowledge is not systemized. Moreover, some aspects of the phenomenon are poorly studied. The present review attempts to present a broad range of aspects involved in the tissue culture-induced variation and hopefully would stimulate further investigations allowing a better understanding of the phenomenon and the cell functioning.


Assuntos
Regulação da Expressão Gênica de Plantas , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Técnicas de Cultura de Tecidos/métodos , Técnicas de Cultura de Tecidos/normas , Metilação de DNA , Epigênese Genética , Proteínas de Plantas/genética
9.
J Appl Genet ; 62(4): 545-557, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34173177

RESUMO

Pampa cytoplasmic male sterility phenomenon is used extensively in the rye hybrid breeding programs. It relies on sterilizing action of the cytoplasm resulting in non-viable pollen of female lines. The sterilizing effect is problematic for reversion, and efficient restores are needed. The most promising QTL is located on chromosome 4R, but other chromosomes may also code the trait. Advanced recombinant inbred lines formed bi-parental mapping population genotyped with DArTseq markers. Genetic mapping allowed the seven linkage groups to construct with numerous markers and represent all rye chromosomes. Single marker analysis and composite interval mapping were conducted to identify markers linked to the pollen fertility. Association mapping was used to detect additional markers associated with the trait. A highly significant QTL (QRfp-4R) that explained 42.3% of the phenotypic variation was mapped to the distal part of the long arm of the 4R chromosome. The markers localized in the QRfp-4R region achieve R2 association values up to 0.59. The homology of the 43 marker sequences to the loci responsible for fertility restoration in other species and transcription termination factor (mTERF) linked to Rf genes was established. Ten markers were successfully converted into PCR-specific conditions, and their segregation pattern was identical to that of unconverted DArTs.


Assuntos
Infertilidade das Plantas , Secale , Citoplasma/genética , Fertilidade/genética , Marcadores Genéticos , Melhoramento Vegetal , Infertilidade das Plantas/genética , Pólen/genética , Reação em Cadeia da Polimerase , Secale/genética
10.
J Appl Genet ; 62(2): 185-198, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33409933

RESUMO

Cytoplasmic male sterility (CMS) is a widely applied plant breeding tool for hybrid seed production. The phenomenon is often caused by chimeric genes with altered open reading frames (ORFs) located in the mitochondrial genomes and expressed as novel genotoxic products that induce pollen abortion. The fertility of CMS plants can be restored by nuclear-encoded genes that inhibit the action of ORFs responsible for pollen sterility. A recombinant inbred line (RIL) mapping population S64/04/01, encompassing 175 individuals, was used for genetic map construction and identification of quantitative trait loci (QTLs) responsible for fertility restoration in rye (Secale cereale L.) with CMS Pampa. The genetic map of all seven rye chromosomes included 15,516 SNP and silicoDArT markers and covered 1070.5 cm. Individual QTLs explaining 60% and 5.5% of the fertility trait's phenotypic variance were mapped to chromosomes 4R (QRft-4R) and 5R (QRft-5R), respectively. Association mapping identified markers with the highest R2 value of 0.58 (p value = 2.21E-28). Markers showing the highest associations with the trait were also mapped to the 4R chromosome within the QRft-4R region. Based on marker sequence homology, putative genes involved in pollen fertility restoration were suggested. Five silicoDArTs were converted into PCR-based markers for further breeding purposes.


Assuntos
Melhoramento Vegetal , Infertilidade das Plantas/genética , Pólen/genética , Locos de Características Quantitativas , Secale , Mapeamento Cromossômico , Marcadores Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Secale/genética
11.
J Appl Genet ; 62(1): 59-71, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33230679

RESUMO

Cytoplasmic male sterility (CMS) phenomenon is widely exploited in commercial hybrid seed production in economically important crop species, including rye, wheat, maize, rice, sorghum, cotton, sugar beets, and many vegetables. Although some commercial successes, little is known about QTLs responsible for the trait in case of triticale with sterilizing Triticum timopheevii (Tt) cytoplasm. Recombinant inbred line (RIL) F6 mapping population encompassing 182 individuals derived from the cross of individual plants representing the HT352 line and cv Borwo was employed for genetic map construction using SNP markers and identification of QTLs conferring pollen sterility in triticale with CMS Tt. The phenotypes of the F1 lines resulting from crossing of the HT352 (Tt) with HT352 (maintainer) × Borwo were determined by assessing the number of the F2 seeds per spike. A genetic map with 21 linkage groups encompasses 29,737 markers and spanned over the distance of 2549 cM. Composite (CIM) and multiple (MIM) interval mappings delivered comparable results. Single QTLs mapped to the 1A, 1B, 2A, 2R, 3B, 3R, 4B, and 5B chromosomes, whereas the 5R and 6B chromosomes shared 3 and 2 QTLs, respectively. The QTLs with the highest LOD score mapped to the 5R, 3R, 1B, and 4B chromosomes; however, the QRft-5R.3 has the highest explained variance of the trait.


Assuntos
Infertilidade das Plantas/genética , Pólen/genética , Locos de Características Quantitativas , Triticale , Mapeamento Cromossômico , Citoplasma/química , Fertilidade , Ligação Genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Triticale/genética , Triticum/química
12.
Cells ; 11(1)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-35011646

RESUMO

Metal ions in the induction medium are essential ingredients allowing green plant regeneration. For instance, Cu(II) and Ag(I) ions may affect the mitochondrial electron transport chain, influencing the Yang cycle and synthesis of S-adenosyl-L-methionine, the prominent donor of the methylation group for all cellular compounds, including cytosines. If the ion concentrations are not balanced, they can interfere with the proper flow of electrons in the respiratory chain and ATP production. Under oxidative stress, methylated cytosines might be subjected to mutations impacting green plant regeneration efficiency. Varying Cu(II) and Ag(I) concentrations in the induction medium and time of anther culture, nine trials of anther culture-derived regenerants of triticale were derived. The methylation-sensitive AFLP approach quantitative characteristics of tissue culture-induced variation, including sequence variation, DNA demethylation, and DNA de novo methylation for all symmetric-CG, CHG, and asymmetric-CHH sequence contexts, were evaluated for all trials. In addition, the implementation of mediation analysis allowed evaluating relationships between factors influencing green plant regeneration efficiency. It was demonstrated that Cu(II) ions mediated relationships between: (1) de novo methylation in the CHH context and sequence variation in the CHH, (2) sequence variation in CHH and green plant regeneration efficiency, (3) de novo methylation in CHH sequences and green plant regeneration, (4) between sequence variation in the CHG context, and green plant regeneration efficiency. Cu(II) ions were not a mediator between de novo methylation in the CG context and green plant regeneration. The latter relationship was mediated by sequence variation in the CG context. On the other hand, we failed to identify any mediating action of Ag(I) ions or the moderating role of time. Furthermore, demethylation in any sequence context seems not to participate in any relationships leading to green plant regeneration, sequence variation, and the involvement of Cu(II) or Ag(I) as mediators.


Assuntos
Cobre/farmacologia , Meios de Cultura/química , Metilação de DNA/genética , Regeneração/genética , Triticale/genética , Triticale/fisiologia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Sequência de Bases , Desmetilação do DNA/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Íons , Regeneração/efeitos dos fármacos , Triticale/efeitos dos fármacos
13.
Plant Mol Biol ; 103(1-2): 33-50, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32048207

RESUMO

KEY MESSAGE: The Taguchi method and metAFLP analysis were used to optimise barley regenerants towards maximum and minimum levels of tissue culture-induced variation. The subtle effects of symmetric and asymmetric methylation changes in regenerants were identified. Plant tissue cultures (PTCs) provide researchers with unique materials that accelerate the development of new breeding cultivars and facilitate studies on off-type regenerants. The emerging variability of regenerants derived from PTCs may have both genetic and epigenetic origins, and may be desirable or degrade the value of regenerated plants. Thus, it is crucial to determine how the PTC variation level can be controlled. The easiest way to manipulate total tissue culture-induced variation (TTCIV) is to utilise appropriate stress factors and suitable medium components. This study describes the optimisation of in vitro tissue culture-induced variation in plant regenerants derived from barley anther culture, and maximizes and minimizes regenerant variation compared with the source explants. The approach relied on methylation amplified fragment length polymorphism (metAFLP)-derived TTCIV characteristics, which were evaluated in regenerants derived under distinct tissue culture conditions and analysed via Taguchi statistics. The factors that may trigger TTCIV included CuSO4, AgNO3 and the total time spent on the induction medium. The donor plants prepared for regeneration purposes had 5.75% and 2.01% polymorphic metAFLP loci with methylation and sequence changes, respectively. The level of TTCIV (as the sum of all metAFLP characteristics analyzed) identified in optimisation and verification experiments reached 7.51 and 10.46%, respectively. In the trial designed to produce a minimum number of differences between donor and regenerant plants, CuSO4 and AgNO3 were more crucial than time, which was not a significant factor. In the trial designed to produce a maximum number of differences between donor and regenerant plants, all factors had comparable impact on variation. The Taguchi method reduced the time required for experimental trials compared with a grid method and suggested that medium modifications were required to control regenerant variation. Finally, the effects of symmetric and asymmetric methylation changes on regenerants were identified using novel aspects of the metAFLP method developed for this analysis.


Assuntos
Hordeum/fisiologia , Técnicas de Cultura de Tecidos , Metilação de DNA , DNA de Plantas/metabolismo , Variação Genética , Hordeum/genética , Regeneração
14.
J Biol Res (Thessalon) ; 23: 19, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27508170

RESUMO

BACKGROUND: In vitro plant regeneration via androgenesis or somatic embryogenesis is capable of inducing (epi)mutations that may affect sexual progenies. While epimutations are associated with DNA methylation, mutations could be due to the movement of transposons. The common notion is that both processes are linked. It is being assumed that demethylation activates transposable elements (TEs). Analysis of methylation changes and their relation with TEs activation in tissue cultures requires uniquely derived donor plants (Ds), their regenerants (Rs) and respective progeny (Ps) that would allow discrimination of processes not related to changes introduced via in vitro cultures. Moreover, a set of methods (RP-HPLC, SSAP, and MSTD) is needed to study whether different TEs families are being activated during in vitro tissue culture plant regeneration and whether their activity could be linked to DNA methylation changes or alternative explanations should be considered. RESULTS: The in vitro tissue culture plant regeneration in barley was responsible for the induction of DNA methylation in regenerants and conservation of the methylation level in the progeny as shown by the RP-HPLC approach. No difference between andro- and embryo-derived Rs and Ps was observed. The SSAP and MSTD approach revealed that Ds and Rs were more polymorphic than Ps. Moreover, Rs individuals exhibited more polymorphisms with the MSTD than SSAP approach. The differences between Ds, Rs and Ps were also evaluated via ANOVA and AMOVA. CONCLUSIONS: Stressful conditions during plant regeneration via in vitro tissue cultures affect regenerants and their sexual progeny leading to an increase in global DNA methylation of Rs and Ps compared to Ds in barley. The increased methylation level noted among regenerants remains unchanged in the Ps as indicated via RP-HPLC data. Marker-based experiments suggest that TEs are activated via in vitro tissue cultures and that, independently of the increased methylation, their activity in Rs is greater than in Ps. Thus, the increased methylation level may not correspond to the stabilization of TEs movement at least at the level of regenerants. The presence of TEs variation among Ds that were genetically and epigenetically uniform may suggest that at least some mobile elements may be active, and they may mask variation related to tissue cultures. Thus, tissue cultures may activate some TEs whereas the others remain intact, or their level of movement is changed. Finally, we suggest that sexual reproduction may be responsible for the stabilization of TEs.

15.
Plant Mol Biol ; 89(3): 279-92, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26337939

RESUMO

Plant regeneration via in vitro culture can induce genetic and epigenetic variation; however, the extent of such changes in triticale is not yet understood. In the present study, metAFLP, a variation of methylation-sensitive amplified fragment length polymorphism analysis, was used to investigate tissue culture-induced variation in triticale regenerants derived from four distinct genotypes using androgenesis and somatic embryogenesis. The metAFLP technique enabled identification of both sequence and DNA methylation pattern changes in a single experiment. Moreover, it was possible to quantify subtle effects such as sequence variation, demethylation, and de novo methylation, which affected 19, 5.5, 4.5% of sites, respectively. Comparison of variation in different genotypes and with different in vitro regeneration approaches demonstrated that both the culture technique and genetic background of donor plants affected tissue culture-induced variation. The results showed that the metAFLP approach could be used for quantification of tissue culture-induced variation and provided direct evidence that in vitro plant regeneration could cause genetic and epigenetic variation.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/metabolismo , Técnicas de Cultura de Tecidos , Triticale/genética , Clonagem de Organismos , Análise por Conglomerados , Genótipo , Técnicas de Amplificação de Ácido Nucleico , Proteínas de Plantas/genética
16.
Mol Breed ; 34(3): 845-854, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25242884

RESUMO

We present the development of the theoretical background of the metAFLP approach which allows for partition of complex variation into sequence changes, de novo methylation and demethylation of the regenerants derived via in vitro tissue culture methods in the case of triticale. It was demonstrated that, independent of whether andro- or embryogenesis was used for plant regeneration, the level of sequence changes identified between regenerants is about 10 %. Moreover, DNA demethylation prevails over de novo methylation of the regenerants compared to the donor plant. The metAFLP approach allows for the evaluation of numerous quantitative characteristics. For instance, one may quantify the number of sites unaffected by tissue culture approaches, global site DNA methylation etc. It is suggested that the approach could be useful for breeders in order to control plant material uniformity or for the evaluation of modified in vitro tissue culture approaches allowing for control of the (epi)mutation level. The extended metAFLP approach presented here delivers sufficient background for the evaluation of software that could facilitate analyses of the tissue culture induced variation.

17.
Cell Mol Biol Lett ; 8(4): 955-61, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14668918

RESUMO

23 AFLP bands were assigned to different rye chromosomes by means of two different sets of wheat-rye addition lines. Only one AFLP band could be assigned to 4R, and no specific AFLPs were found on the 5R chromosome. Only one AFLP band was explicitly assigned to 4R, and no specific AFLPs were found on the 5R chromosome. At least seven co-migrating AFLPs showed the same chromosomal location in both sets of addition lines. A total of 22 AFLPs were assigned to chromosome 1R using wheat-rye substitution lines. Six of them have counterparts in one of the addition lines analyzed, but only four have the same chromosomal location. Six and four of the total AFLPs located using addition (23) and substitution (22) lines segregated in the mapping population DS2 x RXL10, but only six were simultaneously assigned to the same chromosome by both approaches. Although co-migrating AFLPs could be located on different rye chromosomes using addition and substitution lines, we believe that AFLPs can be useful as rye chromosome markers.


Assuntos
Quimera/genética , Cromossomos de Plantas/genética , Polimorfismo Genético , Secale/genética , Triticum/genética , Bandeamento Cromossômico , Técnica de Amplificação ao Acaso de DNA Polimórfico
18.
Cell Mol Biol Lett ; 8(1): 185-93, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12655373

RESUMO

Application of AFLPs linked to pollen fertility restoration and non-performing genes evaluated in the C394-F2 hybrid was studied using a set of male sterile lines in the sterilising Pampa cytoplasm, several restorers and maintainer lines and, finally, two inbred lines backcrossed into cms-P, cms-R, cms-S and cms-C cytoplasms each. The set of male sterile lines based on the Pampa cytoplasm exhibited gradual variation in their ability to restore pollen fertility (starting from low and closing with high) in crosses with three unrelated restorers. Variations in the AFLPs between the analysed materials were observed, however, no clustering of the lines according to their sterile and fertile phenotypes was observed. The same markers, when applied to the population restorer (cv. Walet) that formed the C394-F2 cross permitted identification of plants with genotypes that could be recognized as restorers.


Assuntos
Genes de Plantas , Polimorfismo Genético , Secale/genética , Marcadores Genéticos , Genótipo , Hibridização Genética , Fenótipo
19.
Cell Mol Biol Lett ; 7(2B): 635-48, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12378222

RESUMO

Cytoplasmic male sterility (cms) in rye (Secale cereale L.), especially cytoplasma PAMPA, is used commercially in hybrid breeding programmes. The development of molecular markers that are tightly linked to the numerous genes coding for pollen fertility is expected to have great impact in the field. Morphological and cytological analyses of plants from a three-way cross C394: [(S67P/94 x S38/94) x CHD296] indicated the presence of at least several genes acting at different stages of pollen grain development, and proved the concurrence of both approaches in plant classification. The AFLP technique combined with the Bulk Segregant Analysis (BSA) were applied to identify DNA fragments linked to the genes of interest. All the 256 possible primer pair combinations based on the MseI and EcoRI restriction sites generated distinct band patterns allowing the identification of 31143 DNA fragments, visualised using the isotopic method. On average, any given primer combination generated 122 fragments. Among 1111 and 431 potential genetic markers respectively identified in the restorer form and the maternal lines, 775 and 295 were present in the F2 population. These numbers were then reduced to 109 and 51. The identified DNA fragments were tested on a limited segregating population, C394-F2, in order to eliminate false signals and to select markers for a future marker-assisted selection programme. Twenty-five markers were selected. Four of these markers were not identified via the BSA approach, indicating that if a highly polymorphic component is used for a cross, or a polygenic trait is studied, then the use of a limited population may be required.


Assuntos
Secale/genética , Cruzamento , DNA de Plantas/genética , Genes de Plantas , Marcadores Genéticos , Hibridização Genética , Pólen/genética , Pólen/ultraestrutura , Polimorfismo Genético , Secale/anatomia & histologia , Seleção Genética
20.
Cell Mol Biol Lett ; 7(2B): 777-83, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12378238

RESUMO

Amplified fragment length polymorphism of DNA has been used to analyse the equality of plants obtained from isolated microspores. Although the control parental material was regarded as being highly homozygous, the analysis of the banding patterns of single plants showed a certain level of polymorphism. The analysis of regenerants with a doubled chromosome number did not show any diversity within the progeny of a single line. The differences in banding patterns coming from single plants were only observed in microspore donor lines. These results have proven the high purity of homozygous lines obtained via androgenesis from isolated microspores.


Assuntos
Hordeum/genética , Cruzamento , DNA de Plantas/genética , Homozigoto , Hordeum/fisiologia , Reação em Cadeia da Polimerase , Polimorfismo Genético , Poliploidia , Regeneração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...