Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(19)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34640927

RESUMO

Diagnostics and assessment of the structural performance of collectors and tunnels require multi-criteria as well as comprehensive analyses for improving the safety based on acquired measurement data. This paper presents the basic goals for a structural health monitoring system designed based on distributed fiber optic sensors (DFOS). The issue of selecting appropriate sensors enabling correct strain transfer is discussed hereafter, indicating both limitations of layered cables and advantages of sensors with monolithic cross-section design in terms of reliable measurements. The sensor's design determines the operation of the entire monitoring system and the usefulness of the acquired data for the engineering interpretation. The measurements and results obtained due to monolithic DFOS sensors are described hereafter on the example of real engineering structure-the Burakowski concrete collector in Warsaw during its strengthening with glass-fiber reinforced plastic (GRP) panels.


Assuntos
Tecnologia de Fibra Óptica , Esgotos , Monitorização Fisiológica , Plásticos
2.
Sensors (Basel) ; 21(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34502793

RESUMO

Due to the low costs of distributed optical fibre sensors (DFOS) and the possibility of their direct integration within layered composite members, DFOS technology has considerable potential in structural health monitoring of linear underground infrastructures. Often, it is challenging to truly simulate the actual ground conditions at all construction stages. Thus, reliable measurements are required to adjust the model and verify theoretical calculations. The article presents a new approach to monitor displacements and strains in Glass Fiber Reinforced Polymer (GFRP) collectors and pipelines using DFOS. The research verifies the effectiveness of the proposed monitoring solution for health monitoring of composite pipelines. Optical fibres were installed over the circumference of a composite tubular pipe, both on the internal and external surfaces, while loaded externally. Analysis of strain profiles allowed for calculating the actual displacements (shape) of the pipe within its cross-section plane using the Trapezoidal method. The accuracy of proposed approach was positively verified both with reference spot displacement transducer as well as numerical simulations using finite element method (FEM). DFOS could obtain a comprehensive view of structural deformations, including both strains and displacements under externally applied load. The knowledge gained during research will be ultimately used for renovating existing collectors.


Assuntos
Tecnologia de Fibra Óptica , Fibras Ópticas , Polímeros , Transdutores
3.
Front Microbiol ; 12: 616050, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897632

RESUMO

Many microbial specialized metabolites are industrially relevant agents but also serve as signaling molecules in intra-species and even inter-kingdom interactions. In the antibiotic-producing Streptomyces, members of the SARP (Streptomyces antibiotic regulatory proteins) family of regulators are often encoded within biosynthetic gene clusters and serve as their direct activators. Coelimycin is the earliest, colored specialized metabolite synthesized in the life cycle of the model organism Streptomyces coelicolor A3(2). Deletion of its two SARP activators cpkO and cpkN abolished coelimycin synthesis and resulted in dramatic changes in the production of the later, stationary-phase antibiotics. The underlying mechanisms of these phenotypes were deregulation of precursor flux and quorum sensing, as shown by label-free, bottom-up shotgun proteomics. Detailed profiling of promoter activities demonstrated that CpkO is the upper-level cluster activator that induces CpkN, while CpkN activates type II thioesterase ScoT, necessary for coelimycin synthesis. What is more, we show that cpkN is regulated by quorum sensing gamma-butyrolactone receptor ScbR.

4.
J Biol Chem ; 296: 100299, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33460651

RESUMO

The human Gb3/CD77 synthase, encoded by the A4GALT gene, is an unusually promiscuous glycosyltransferase. It synthesizes the Galα1→4Gal linkage on two different glycosphingolipids (GSLs), producing globotriaosylceramide (Gb3, CD77, Pk) and the P1 antigen. Gb3 is the major receptor for Shiga toxins (Stxs) produced by enterohemorrhagic Escherichia coli. A single amino acid substitution (p.Q211E) ramps up the enzyme's promiscuity, rendering it able to attach Gal both to another Gal residue and to GalNAc, giving rise to NOR1 and NOR2 GSLs. Human Gb3/CD77 synthase was long believed to transfer Gal only to GSL acceptors, therefore its GSL products were, by default, considered the only human Stx receptors. Here, using soluble, recombinant human Gb3/CD77 synthase and p.Q211E mutein, we demonstrate that both enzymes can synthesize the P1 glycotope (terminal Galα1→4Galß1→4GlcNAc-R) on a complex type N-glycan and a synthetic N-glycoprotein (saposin D). Moreover, by transfection of CHO-Lec2 cells with vectors encoding human Gb3/CD77 synthase and its p.Q211E mutein, we demonstrate that both enzymes produce P1 glycotopes on N-glycoproteins, with the mutein exhibiting elevated activity. These P1-terminated N-glycoproteins are recognized by Stx1 but not Stx2 B subunits. Finally, cytotoxicity assays show that Stx1 can use P1 N-glycoproteins produced in CHO-Lec2 cells as functional receptors. We conclude that Stx1 can recognize and use P1 N-glycoproteins in addition to its canonical GSL receptors to enter and kill the cells, while Stx2 can use GSLs only. Collectively, these results may have important implications for our understanding of the Shiga toxin pathology.


Assuntos
Galactosiltransferases/química , Globosídeos/química , Toxina Shiga I/química , Triexosilceramidas/química , Acetilgalactosamina/química , Acetilgalactosamina/metabolismo , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Animais , Sítios de Ligação , Células CHO , Sequência de Carboidratos , Cricetulus , Escherichia coli Êntero-Hemorrágica/química , Escherichia coli Êntero-Hemorrágica/patogenicidade , Galactose/química , Galactose/metabolismo , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Expressão Gênica , Globosídeos/biossíntese , Globosídeos/metabolismo , Glucose/química , Glucose/metabolismo , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Toxina Shiga I/metabolismo , Toxina Shiga II/química , Toxina Shiga II/metabolismo , Triexosilceramidas/biossíntese
5.
Appl Microbiol Biotechnol ; 103(16): 6423-6434, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31250060

RESUMO

Despite being a yellow pigment visible to the human eye, coelimycin (CPK) remained to be an undiscovered secondary metabolite for over 50 years of Streptomyces research. Although the function of this polyketide is still unclear, we now know that its "cryptic" nature is attributed to a very complex and precise mechanism of cpk gene cluster regulation in the model actinomycete S. coelicolor A3(2). It responds to the stringent culture density and timing of the transition phase by the quorum-sensing butanolide system and to the specific nutrient availability/uptake signals mediated by the global (pleiotropic) regulators; many of which are two-component signal transduction systems. The final effectors of this regulation cascade are predicted to be two cluster-situated Streptomyces antibiotic regulatory proteins (SARPs) putatively activating the expression of type I polyketide synthase (PKS I) genes. After its synthesis, unstable, colorless antibiotic coelimycin A reacts with specific compounds in the medium losing its antibacterial properties and giving rise to yellow coelimycins P1 and P2. Here we review the current knowledge on coelimycin synthesis regulation in Streptomyces coelicolor A3(2). We focus on the regulatory feedback loop which interconnects the butanolide system with other cpk cluster-situated regulators. We also present the effects exerted on cpk genes expression by the global, pleiotropic regulators, and the regulatory connections between cpk and other biosynthetic gene clusters.


Assuntos
Antibacterianos/biossíntese , Vias Biossintéticas/genética , Regulação Bacteriana da Expressão Gênica , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...