Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Microbiol ; 8: 2448, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29321766

RESUMO

The aim of the study was to explore the halophile metabolome in building materials using untargeted metabolomics which allows for broad metabolome coverage. For this reason, we used high-performance liquid chromatography interfaced to high-resolution mass spectrometry (HPLC/HRMS). As an alternative to standard microscopy techniques, we introduced pioneering Coherent Anti-stokes Raman Scattering Microscopy (CARS) to non-invasively visualize microbial cells. Brick samples saturated with salt solution (KCl, NaCl (two salinity levels), MgSO4, Mg(NO3)2), were inoculated with the mixture of preselected halophilic microorganisms, i.e., bacteria: Halobacillus styriensis, Halobacillus naozhouensis, Halobacillus hunanensis, Staphylococcus succinus, Marinococcus halophilus, Virgibacillus halodenitryficans, and yeast: Sterigmatomyces halophilus and stored at 28°C and 80% relative humidity for a year. Metabolites were extracted directly from the brick samples and measured via HPLC/HRMS in both positive and negative ion modes. Overall, untargeted metabolomics allowed for discovering the interactions of halophilic microorganisms with buildings materials which together with CARS microscopy enabled us to elucidate the biodeterioration process caused by halophiles. We observed that halophile metabolome was differently affected by different salt solutions. Furthermore, we found indications for haloadaptive strategies and degradation of brick samples due to microbial pigment production as a salt stress response. Finally, we detected changes in lipid content related to changes in the structure of phospholipid bilayers and membrane fluidity.

2.
Mar Environ Res ; 122: 105-112, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27742449

RESUMO

16S rRNA gene profiling using a pipeline involving the Greengenes database revealed that bacterial populations in innermost (proximal to the steel surface) and outer regions of biofilms on carbon steel exposed 3 m below the surface at an offshore site in the Gulf of Guinea differed from one another and from seawater. There was a preponderance of gammaproteobacterial sequences, representing organisms known for hydrocarbon degradation. Total DNA from the innermost layer was 1500 times that recovered from the outermost. Stramenopiles (diatom) sequences were prevalent in the former. Rhodobacteriaceae, key biofilm formers, comprised 14.9% and 4.22% OTUs of inner and outer layers, respectively. Photosynthetic anaerobic sulfur oxidizer sequences were also prominent in the biofilms. Analysis of data using a different pipeline with Silva111 allowed detection of 0.3-0.4% SRB in the biofilms. The high abundance of aerobic micro-algal sequences in inner biofilm suggests they are initial colonizers of carbon steel surfaces in a marine environment. This is the first time that the microbial population of the strongly attached inner layer of the biofilm on steel has been differentiated from the outer, readily removed layer. The accepted scraping removal method is obviously inadequate and the resulting microbial analysis does not offer complete information on the biofilm community structure.


Assuntos
Bactérias/genética , Biofilmes/classificação , Monitoramento Ambiental/métodos , Plâncton/genética , Água do Mar/microbiologia , Bactérias/classificação , Biodiversidade , Guiné , Plâncton/classificação , RNA Ribossômico 16S
3.
Materials (Basel) ; 9(8)2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-28773758

RESUMO

Biofouling often occurs in cooling water systems, resulting in the reduction of heat exchange efficiency and corrosion of the cooling pipes, which raises the running costs. Therefore, controlling biofouling is very important. To regulate biofouling, we focus on the formation of biofilm, which is the early step of biofouling. In this study, we investigated whether silver or copper nanoparticles-dispersed silane coatings inhibited biofilm formation in cooling systems. We developed a closed laboratory biofilm reactor as a model of a cooling pipe and used seawater as a model for cooling water. Silver or copper nanoparticles-dispersed silane coating (Ag coating and Cu coating) coupons were soaked in seawater, and the seawater was circulated in the laboratory biofilm reactor for several days to create biofilms. Three-dimensional images of the surface showed that sea-island-like structures were formed on silane coatings and low concentration Cu coating, whereas nothing was formed on high concentration Cu coatings and low concentration Ag coating. The sea-island-like structures were analyzed by Raman spectroscopy to estimate the components of the biofilm. We found that both the Cu coating and Ag coating were effective methods to inhibit biofilm formation in cooling pipes.

4.
Front Microbiol ; 6: 979, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26483760

RESUMO

Preservation of cultural heritage is of paramount importance worldwide. Microbial colonization of construction materials, such as wood, brick, mortar, and stone in historic buildings can lead to severe deterioration. The aim of the present study was to give modern insight into the phylogenetic diversity and activated metabolic pathways of microbial communities colonized historic objects located in the former Auschwitz II-Birkenau concentration and extermination camp in Oswiecim, Poland. For this purpose we combined molecular, microscopic and chemical methods. Selected specimens were examined using Field Emission Scanning Electron Microscopy (FESEM), metabolomic analysis and high-throughput Illumina sequencing. FESEM imaging revealed the presence of complex microbial communities comprising diatoms, fungi and bacteria, mainly cyanobacteria and actinobacteria, on sample surfaces. Microbial diversity of brick specimens appeared higher than that of the wood and was dominated by algae and cyanobacteria, while wood was mainly colonized by fungi. DNA sequences documented the presence of 15 bacterial phyla representing 99 genera including Halomonas, Halorhodospira, Salinisphaera, Salinibacterium, Rubrobacter, Streptomyces, Arthrobacter and nine fungal classes represented by 113 genera including Cladosporium, Acremonium, Alternaria, Engyodontium, Penicillium, Rhizopus, and Aureobasidium. Most of the identified sequences were characteristic of organisms implicated in deterioration of wood and brick. Metabolomic data indicated the activation of numerous metabolic pathways, including those regulating the production of primary and secondary metabolites, for example, metabolites associated with the production of antibiotics, organic acids and deterioration of organic compounds. The study demonstrated that a combination of electron microscopy imaging with metabolomic and genomic techniques allows to link the phylogenetic information and metabolic profiles of microbial communities and to shed new light on biodeterioration processes.

5.
J Am Soc Mass Spectrom ; 26(9): 1538-47, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26122514

RESUMO

A novel interface for ambient, laser ablation-based mass spectrometric imaging (MSI) referred to as laser ablation and solvent capture by aspiration (LASCA) is presented and its performance demonstrated using selected, unaltered biological materials. LASCA employs a pulsed 2.94 µm laser beam for specimen ablation. Ablated materials in the laser plumes are collected on a hanging solvent droplet with electric field-enhanced trapping, followed by aspiration of droplets and remaining plume material in the form of a coarse aerosol into a collection capillary. The gas and liquid phases are subsequently separated in a 10 µL-volume separatory funnel, and the solution is analyzed with electrospray ionization in a high mass resolution Q-ToF mass spectrometer. The LASCA system separates the sampling and ionization steps in MSI and combines high efficiencies of laser plume sampling and of electrospray ionization (ESI) with high mass resolution MS. Up to 2000 different compounds are detected from a single ablation spot (pixel). Using the LASCA platform, rapid (6 s per pixel), high sensitivity, high mass-resolution ambient imaging of "as-received" biological material is achieved routinely and reproducibly.

6.
Biointerphases ; 10(1): 019003, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25708633

RESUMO

Ambient laser ablation and solvent capture by aspiration (LASCA) mass spectrometric imaging was combined with metabolomics high-performance liquid chromatography (HPLC) mass spectrometry analysis and light profilometry to investigate the correlation between chemical composition of marine bacterial biofilms on surfaces of 1018 carbon steel and corrosion damage of steel underneath the biofilms. Pure cultures of Marinobacter sp. or a wild population of bacteria present in coastal seawater served as sources of biofilms. Profilometry data of biofilm-free surfaces demonstrated heterogeneous distributions of corrosion damage. LASCA data were correlated with areas on the coupons varying in the level of corrosion attack, to reveal differences in chemical composition within biofilm regions associated with corroding and corrosion-free zones. Putative identification of selected compounds was carried out based on HPLC results and subsequent database searches. This is the first report of successful ambient chemical and metabolomic imaging of marine biofilms on corroding metallic materials. The metabolic analysis of such biofilms is challenging due to the presence in the biofilm of large amounts of corrosion products. However, by using the LASCA imaging interface, images of more than 1000 ions (potential metabolites) are generated, revealing striking heterogeneities within the biofilm. In the two model systems studied here, it is found that some of the patterns observed in selected ion images closely correlate with the occurrence and extent of corrosion in the carbon steel substrate as revealed by profilometry, while others do not. This approach toward the study of microbially influenced corrosion (MIC) holds great promise for approaching a fundamental understanding of the mechanisms involved in MIC.


Assuntos
Bactérias/química , Bactérias/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Corrosão , Microbiologia Ambiental , Metaboloma , Aço , Bactérias/metabolismo , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Imagem Óptica
7.
Biofouling ; 30(7): 823-35, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25115517

RESUMO

Microbially influenced corrosion (MIC) has long been implicated in the deterioration of carbon steel in oil and gas pipeline systems. The authors sought to identify and characterize sessile biofilm communities within a high-temperature oil production pipeline, and to compare the profiles of the biofilm community with those of the previously analyzed planktonic communities. Eubacterial and archaeal 16S rRNA sequences of DNA recovered from extracted pipeline pieces, termed 'cookies,' revealed the presence of thermophilic sulfidogenic anaerobes, as well as mesophilic aerobes. Electron microscopy and elemental analysis of cookies confirmed the presence of sessile cells and chemical constituents consistent with corrosive biofilms. Mass spectrometry of cookie acid washes identified putative hydrocarbon metabolites, while surface profiling revealed pitting and general corrosion damage. The results suggest that in an established closed system, the biofilm taxa are representative of the planktonic eubacterial and archaeal community, and that sampling and monitoring of the planktonic bacterial population can offer insight into biocorrosion activity. Additionally, hydrocarbon biodegradation is likely to sustain these communities. The importance of appropriate sample handling and storage procedures to oilfield MIC diagnostics is highlighted.


Assuntos
Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Biofilmes/classificação , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Corrosão , DNA Bacteriano/genética , Indústrias Extrativas e de Processamento , RNA Ribossômico 16S/genética , Aço/química
8.
Bioelectrochemistry ; 97: 76-88, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24169516

RESUMO

Influence of sulfidogenic bacteria, from a North Sea seawater injection system, on the corrosion of S235JR carbon steel was studied in a flow bioreactor; operating anaerobically for 100days with either inoculated or filtrated seawater. Deposits formed on steel placed in reactors contained magnesium and calcium minerals plus iron sulfide. The dominant biofilm-forming organism was an anaerobic bacterium, genus Caminicella, known to produce hydrogen sulfide and carbon dioxide. Open Circuit Potentials (OCP) of steel in the reactors was, for nearly the entire test duration, in the range -80045), suggested pitting on steel samples within the inoculated environment. However, the actual degree of corrosion could neither be directly correlated with the electrochemical data and nor with the steel corrosion in the filtrated seawater environment. Further laboratory tests are thought to clarify the noticed apparent discrepancies.


Assuntos
Biofilmes/crescimento & desenvolvimento , Carbono/química , Corrosão , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/fisiologia , Água do Mar/microbiologia , Aço/química , Reatores Biológicos , Desenho de Equipamento , Mar do Norte , Sulfetos/metabolismo
9.
Langmuir ; 22(17): 7217-25, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16893218

RESUMO

Atomic force microscopy (AFM) was combined with surface analytical techniques to investigate the rarely addressed issue of the effect of seawater on the surface properties of a selected fouling-release coating, silicon elastomer RTV11 (trademark of General Electric). The exposure of the RTV11 surface to seawater resulted in a modification of its morphology and mechanical properties, as confirmed by AFM and scanning electron microscopy (SEM). Surface modification was dependent on sample preparation and curing process, namely, curing agent concentration and relative humidity during curing. The RTV11 surface remained largely unaltered for samples cured under 100% relative humidity. SEM and X-ray photoelectron spectroscopy studies confirmed that the modified surface of RTV11 had the same elemental composition as the unexposed surface of the elastomer and showed excess Ca. However, the modified surface deformed plastically under load and was stiffer than the original surface. No major change was found on surfaces exposed to nanopure water during similar times of exposure as in seawater, regardless of curing conditions. The rate of increase in the aggregate formation in seawater can be described by an exponential function, with a decay constant of approximately 4.99 x 10(-)(3) min(-)(1) and a pre-exponential factor of approximately 1.77 x 10(-)(2) microm/min.


Assuntos
Dimetilpolisiloxanos/química , Água do Mar/química , Elastômeros de Silicone/química , Atmosfera , Cálcio/farmacologia , Microscopia de Força Atômica , Nanotecnologia , Elastômeros de Silicone/classificação , Propriedades de Superfície
10.
J Am Soc Mass Spectrom ; 17(2): 151-62, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16427304

RESUMO

The clustering of a medium-sized, involatile, neutral molecule, octyl beta-D-glucopyranoside (OG), with Na(+), Ca(2+), and Yb(3+) (M(z+)) ions in electrospray (ESI) was investigated using laser spray (LSI). Extensive distributions of [(M(z+))(i) (OG)(a)](n+)-clusters, extending beyond 50 kDa, were observed. The distributions were highly stable and reproducible and changed only marginally when concentrations of electrolyte or neutral compound were varied by orders of magnitude. Compared with ESI, laser spray yielded superior intensities, particularly of the larger clusters. The cluster distributions demonstrated a range of remarkable features. In particular, the Yb(3+)/OG cluster distribution was unusual. For example, no clusters with 35-52 or with 110-116 OG molecules were observed. The distribution pattern revealed that the clusters were formed as a result of cluster dissociations, such as [(Yb(3+))(3)(OG) ( approximately 110)W](9+) --> [(Yb(3+))(2)(OG)( approximately 90)W](6+) + [(Yb(3+))(1)(OG) ( approximately 20)W](3+), where W represents the water content at the time of dissociation. Based on this study, a cluster division model for electrospray of aqueous solutions of strongly solvated ions is proposed: the Rayleigh droplet disintegration process, which is well-established for the initial stages of electrospray, maintains its general character as it proceeds through a final regime of multiply charged cluster dissociations to the singly and multiply charged ions in mass spectrometry. In the dissociation of multiply charged clusters, the size of each daughter cluster is roughly proportional to the square of the cluster charge. Observed cluster distributions are consistent with a mixture of symmetric and asymmetric cluster dissociations.

11.
Int Microbiol ; 8(3): 157-68, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16200494

RESUMO

The presence of microorganisms on material surfaces can have a profound effect on materials performance. Surface-associated microbial growth, i.e. a biofilm, is known to instigate biofouling. The presence of biofilms may promote interfacial physico-chemical reactions that are not favored under abiotic conditions. In the case of metallic materials, undesirable changes in material properties due to a biofilm (or a biofouling layer) are referred to as biocorrosion or microbially influenced corrosion (MIC). Biofouling and biocorrosion occur in aquatic and terrestrial habitats varying in nutrient content, temperature, pressure and pH. Interfacial chemistry in such systems reflects a wide variety of physiological activities carried out by diverse microbial populations thriving within biofilms. Biocorrosion can be viewed as a consequence of coupled biological and abiotic electron-transfer reactions, i.e. redox reactions of metals, enabled by microbial ecology. Microbially produced extracellular polymeric substances (EPS), which comprise different macromolecules, mediate initial cell adhesion to the material surface and constitute a biofilm matrix. Despite their unquestionable importance in biofilm development, the extent to which EPS contribute to biocorrosion is not well-understood. This review offers a current perspective on material/microbe interactions pertinent to biocorrosion and biofouling, with EPS as a focal point, while emphasizing the role atomic force spectroscopy and mass spectrometry techniques can play in elucidating such interactions.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Microbiologia Ambiental , Corrosão , Transporte de Elétrons , Matriz Extracelular/metabolismo , Espectrometria de Massas , Metais/química , Microscopia de Força Atômica , Polímeros/metabolismo
12.
Int. microbiol ; 8(3): 157-168, sept. 2005. ilus, tab, graf
Artigo em En | IBECS | ID: ibc-040084

RESUMO

The presence of microorganisms on material surfaces can have a profound effect on materials performance. Surface-associated microbial growth, i.e. a biofilm, is known to instigate biofouling. The presence of biofilms may promote interfacial physico-chemical reactions that are not favored under abiotic conditions. In the case of metallic materials, undesirable changes in material properties due to a biofilm (or a biofouling layer) are referred to as biocorrosion or microbially influenced corrosion (MIC). Biofouling and biocorrosion occur in aquatic and terrestrial habitats varying in nutrient content, temperature, pressure and pH. Interfacial chemistry in such systems reflects a wide variety of physiological activities carried out by diverse microbial populations thriving within biofilms. Biocorrosion can be viewed as a consequence of coupled biological and abiotic electron-transfer reactions, i.e. redox reactions of metals, enabled by microbial ecology. Microbially produced extracellular polymeric substances (EPS), which comprise different macromolecules, mediate initial cell adhesion to the material surface and constitute a biofilm matrix. Despite their unquestionable importance in biofilm development, the extent to which EPS contribute to biocorrosion is not well-understood. This review offers a current perspective on material/microbe interactions pertinent to biocorrosion and biofouling, with EPS as a focal point, while emphasizing the role atomic force spectroscopy and mass spectrometry techniques can play in elucidating such interactions (AU)


La presencia de microorganismos en las superficies de materiales puede tener un efecto profundo en el funcionamiento de dichos materiales. El crecimiento microbiano asociado a superficies, por ejemplo un biofilm, se sabe que estimula el desarrollo del bioensuciamiento (biofouling). La presencia de biofilms puede promover en las interfaces reacciones fisicoquímicas no favorecidas en condiciones abióticas. En el caso de materiales metálicos, los cambios no deseados en las características del material y debidos a un biofilm (o a una capa de bioensuciamiento) se denominan biocorrosión o corrosión microbiana (MIC, microbially influenced corrosion). El bioensuciamiento y la biocorrosión se producen en hábitat acuáticos y terrestres con diferentes contenidos de nutrientes, temperatura, presión y pH. En dichos sistemas, la química de las interfaces refleja una gran variedad de actividades fisiológicas realizadas por poblaciones microbianas diversas que crecen muy bien en los biofilms. La biocorrosión puede verse como la consecuencia de un conjunto de reacciones biológicas y abióticas de transferencia de electrones de los metales, por ejemplo reacciones redox, favorecidas por la ecología microbiana. Las sustancias poliméricas extracelulares (EPS) producidas por microorganismos, que comprenden diferentes macromoléculas, median la adherencia inicial de la célula a la superficie del material y constituyen la matriz del biofilm. A pesar de su importancia indiscutible en el desarrollo del biofilm, no se sabe muy bien hasta qué punto contribuyen las EPS a la biocorrosión. Esta revisión describe la percepción actual de las interacciones material/microorganismo relativas a la biocorrosión y al bioensuciamiento, centrándose en las EPS, y destacando el papel que las técnicas de espectroscopia de fuerza atómica y de espectrometría de masas pueden desempeñar en la aclaración de tales interacciones (AU)


Assuntos
Polímeros/análise , Corrosão , Contaminação Biológica , Biofilmes , Análise Espectral/métodos , Espectrometria de Massas/métodos
13.
Rapid Commun Mass Spectrom ; 19(17): 2433-42, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16059883

RESUMO

Atmospheric pressure Penning ionization mass spectra of methanol were measured as functions of Ar or He gas pressure in the first vacuum chamber, the position of the skimmer, and the voltage applied between the orifice and the skimmer. When the orifice and the skimmer were coaxial with a distance of 4 mm, the distribution of CH3OH2+(CH3OH)n clusters was only weakly dependent on both Ar pressure (in the range of 19-220 Pa) and orifice-skimmer voltage (in the range of 1-45 V). The ion/molecule reaction CH3OH2+ + CH3OH --> CH3+(CH3OH) + H2O was observed in the free jet expansion, especially at high orifice-skimmer voltage values. When the orifice and the skimmer were off-centered and the distance between them was increased to 18 mm, the formation of large CH3OH2+(CH3OH)n clusters, as well as their dissociation, were seen. The endothermic proton transfer reaction, CH3+(CH3OH) + CH3OH --> CH3OH2+ + CH3OCH3, occurred at high orifice-skimmer voltage. The collision-induced dissociation of cluster ions by He gas in the first vacuum chamber was much more efficient than by Ar. These results demonstrated that the mass spectra are highly dependent on skimmer position and on orifice-skimmer voltage and that ions observed by mass spectrometry do not necessarily reflect the abundance of ions produced in the atmospheric pressure ion source.

14.
Biophys J ; 87(6): 4284-97, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15377513

RESUMO

Atomic force microscopy has been employed to compare the adhesion of Navicula species I diatoms to surfaces of a hydrophobic elastomer, Intersleek, and a hydrophilic mineral, mica. This was accomplished using tipless atomic force microscopy cantilevers functionalized with live diatom cells. Both surfaces were tested with the same diatom bioprobe. Force versus distance curves generated during these experiments revealed comparable cell adhesion strengths on Intersleek and mica, indicating that Navicula diatoms secrete extracellular polymeric substances with hydrophobic and hydrophilic properties. A statistical analysis of force curves was carried out and the average values of works of detachment of a diatom from Intersleek and mica surfaces were determined.


Assuntos
Silicatos de Alumínio , Bioensaio/métodos , Técnicas Biossensoriais/métodos , Adesão Celular/fisiologia , Diatomáceas/fisiologia , Diatomáceas/ultraestrutura , Elastômeros , Microscopia de Força Atômica/métodos , Adesividade , Bioensaio/instrumentação , Técnicas Biossensoriais/instrumentação , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Elasticidade , Interpretação de Imagem Assistida por Computador/métodos , Microscopia de Força Atômica/instrumentação , Estresse Mecânico , Propriedades de Superfície , Resistência à Tração
15.
Int J Syst Evol Microbiol ; 54(Pt 5): 1747-1752, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15388739

RESUMO

A novel sulphate-reducing bacterium (Al1T) was recovered from a soured oil well in Purdu Bay, Alaska. Light and atomic force microscopy observations revealed that cells were Gram-negative, vibrio-shaped and motile by means of a single polar flagellum. The carbon and energy sources used by the isolate and the salinity, temperature and pH ranges facilitating its growth proved to be typical of a partial lactate-oxidizing, moderately halophilic, mesophilic, sulphate-reducing bacterium. Analysis of the fatty acid profile revealed that C(18 : 0), isoC(15 : 0) and isoC(17 : 1)omega7c were the predominant species. Fatty acid profile and complete 16S rRNA gene sequencing demonstrated the similarity between strain Al1T and members of the genus Desulfovibrio. The position of strain Al1T within the phylogenetic tree indicated that it clustered closely with Desulfovibrio vietnamensis DSM 10520T (98.9 % sequence similarity), a strain recovered from a similar habitat. However, whole-cell protein profiles, Fourier-transform infrared studies and DNA-DNA hybridization demonstrated that, in spite of the high level of 16S rRNA gene sequence similarity, there is sufficient dissimilarity at the DNA sequence level between D. vietnamensis DSM 10520T and strain Al1T (10.2 % similarity) to propose that strain Al1T belongs to a separate species within the genus Desulfovibrio. Based on the results obtained, the name Desulfovibrio alaskensis sp. nov. is therefore proposed, with Al1T (= NCIMB 13491T = DSM 16109T) as the type strain.


Assuntos
Desulfovibrio/classificação , Desulfovibrio/metabolismo , Petróleo/microbiologia , Sulfatos/metabolismo , Alaska , Proteínas de Bactérias/análise , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , DNA Ribossômico/química , DNA Ribossômico/isolamento & purificação , Desulfovibrio/citologia , Desulfovibrio/isolamento & purificação , Desulfovibrio/fisiologia , Ácidos Graxos/análise , Fermentação , Flagelos , Genes de RNAr , Inibidores do Crescimento/farmacologia , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Movimento , Hibridização de Ácido Nucleico , Oxirredução , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio/farmacologia , Microbiologia do Solo , Temperatura
16.
Curr Opin Biotechnol ; 15(3): 181-6, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15193324

RESUMO

The term microbially influenced corrosion, or biocorrosion, refers to the accelerated deterioration of metals owing to the presence of biofilms on their surfaces. The detailed mechanisms of biocorrosion are still poorly understood. Recent investigations into biocorrosion have focused on the influence of biomineralization processes taking place on metallic surfaces and the impact of extracellular enzymes, active within the biofilm matrix, on electrochemical reactions at the biofilm-metal interface.


Assuntos
Biofilmes , Biotecnologia/métodos , Metais Pesados/química , Biotecnologia/tendências , Corrosão , Eletroquímica , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Ferro/química , Microscopia de Força Atômica , Oxigênio/química , Polímeros/química , Temperatura
17.
J Mol Microbiol Biotechnol ; 5(1): 11-6, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12673057

RESUMO

Escherichia coli proteins YegE and YaiC contain N-terminal integral membrane regions, followed by the putative diguanylate cyclase (GGDEF, DUF1) domains. The membrane domains of these proteins, named MASE1 (membrane-associated sensor) and MASE2, respectively, were found in other bacterial signaling proteins, such as histidine kinases (MASE1) and an adenylate cyclase (MASE2). Although the nature of the signals sensed by MASE1 and MASE2 is still unknown, MASE1-containing receptors appear to play important roles in bacteria, including iron and/or oxygen sensing by hemerythrine-containing proteins in the sulfate-reducing bacterium Desulfovibrio vulgaris.


Assuntos
Adenilil Ciclases/química , Escherichia coli/enzimologia , Proteínas Quinases/química , Transdução de Sinais , Adenilil Ciclases/genética , Sequência de Aminoácidos , Escherichia coli/química , Histidina Quinase , Dados de Sequência Molecular , Proteínas Quinases/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência , Análise de Sequência de DNA
18.
Rev. microbiol ; 30(3): 177-90, jul.-set. 1999. ilus, tab, graf
Artigo em Português, Inglês | LILACS | ID: lil-253771

RESUMO

Biocorrosion processes at metal surface are associated with microorganisms, or the products of their metabolic activities including enzymes, exopolymers, organic and inorganic acids, as well as volatile compounds such as ammonia or hydrogen sulfide. These can affect catholic and/or anodic reactions, thus altering electrochemistry at the biofilm/metal interface. Various mechanisms of biocorrosion, reflecting the variety of physiological activities carried out by different types of microorganisms, are identified and recent insights into these mechanisms reviewed. Many investigations have centered on the microbially-influenced corrosion of ferrous and copper alloys and particular microorganisms of interest have been the sulfate-reducing bacteria and metal (especially manganese)-depositing bacteria. The importance of microbial consortia and the role of extracellular polymeric substances in biocorrosion are emphasized. The contribution to the study of biocorrosion of modern analytical techniques, such as atomic force microscopy, Auger electron, X-ray photoelectron and Mössbauer spectroscopy, attenuated total reflectance Fourier transform infrared spectroscopy and microsensors, is discussed


Assuntos
Metais/química , Cobre/metabolismo , Cobre/química , Metais/metabolismo , Aço/química , Corrosão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...