Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 51(22): 12230-41, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23127257

RESUMO

A series of novel terbium tetracyanoplatinate compounds all incorporating tridentate 2,2':6'2″-terpyridine (terpy) or 4'-chloro-2,2':6'2″-terpyridine (terpy-Cl) were synthesized and used to investigate the phenomenon of dual-donor sensitization of Tb(3+). Judicious choice of the Tb(3+) salt and reaction conditions results in the isolation of {Tb(terpy)(H2O)2(NO3)Pt(CN)4}·CH3CN (1A), {Tb(terpy)(H2O)2(NO3)Pt(CN)4}·3.5H2O (1B), {Tb(terpy-Cl)(H2O)2(NO3)Pt(CN)4}·2.5H2O (2), [Tb(terpy)(H2O)2(CH3COO)2]2Pt(CN)4·4H2O (3), or [Tb2(terpy)2(H2O)2(CH3COO)5]2Pt(CN)4·7H2O (4). The compounds 1A, 1B, and 2 contain one-dimensional polymeric structures with bridging of [Tb(L)(NO3)(H2O)2](2+) (L = terpy or terpy-Cl) moieties by cis-bridging tetracyanoplatinate (TCP) anions as determined via single-crystal X-ray diffraction studies. Both 3 and 4, however, contain Tb(3+) coordinated by multiple acetate ligands and terpy, but not TCP, and are classified as zero-dimensional complex salts. Platinophilic interactions that dominate tetracyanoplatinate structural chemistry are present in the form of dimeric units in the polymeric compounds, but are totally absent in 3 and 4. The structural differences result in markedly different luminescence properties for the two classes of compounds. All of the polymeric compounds display efficient donor-acceptor intramolecular energy transfer (IET) from the terpy unit to the Tb(3+) ion. Although the TCP units are also directly coordinated to the Tb(3+) ion in the three polymers, only in 1B and 2 are the Pt···Pt interactions strong enough to provide MMLCT bands of appropriate energy to result in a dual-donor effect to the Tb(3+) sensitization. Even in these cases, TCP does not efficiently sensitize the Tb(3+), rather a broad band TCP emission results. However, terpy and acetate ligands are bonded directly to the Tb(3+) ion in 3 and 4 and provide a strong dual-donor sensitization effect as evidenced by the large QY for Tb(3+).

2.
Inorg Chem ; 48(14): 6425-35, 2009 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-19534548

RESUMO

The synthesis of three different europium tetracyanoplatinates all incorporating 2,2':6',2''-terpyridine (terpy) have been carried out in acetonitrile/water mixtures by reaction of Eu(3+) salts with terpy and potassium tetracyanoplatinate. The use of different Eu(3+) sources results in the isolation of Eu(C(15)H(11)N(3))(H(2)O)(2)(NO(3))(Pt(CN)(4)) x CH(3)CN (1), {Eu(C(15)H(11)N(3))(H(2)O)(3)}(2)(Pt(CN)(4))(3) x 2 H(2)O (2), or [Eu(C(15)H(11)N(3))(H(2)O)(2)(CH(3)COO)(2)](2)Pt(CN)(4) x 3 H(2)O (3) for the nitrate, triflate, or acetate salts, respectively. All three compounds have been prepared as colorless crystals, and single-crystal X-ray diffraction has been used to investigate their structural features. Crystallographic data (MoK alpha, lambda = 0.71073 A, T = 290 K): 1, monoclinic, space group P2(1)/c, a = 12.835(1), b = 15.239(1), c = 13.751(2) A, beta = 105.594(9) degrees, V = 2590.8(5) A(3), Z = 4; 2, triclinic, space group P1, a = 9.1802(8) A, b = 10.8008(9) A, c = 13.5437(9) A, alpha = 84.491(6) degrees, beta = 75.063(7) degrees, gamma = 79.055(7) degrees, V = 1272.4(2) A(3), Z = 1; 3, triclinic, space group P1, a = 12.110(3) A, b = 12.7273(11) A, c = 18.7054(16) A, alpha = 92.859(7) degrees, beta = 92.200(11) degrees, gamma = 118.057(10) degrees, V = 2534.8(7) A(3), Z = 2. Variation of the counteranions in these systems provides the opportunity to modify the structures and coordination environment of Eu(3+) for 1-3. Compounds 1 and 2 are both one-dimensional, polymeric compounds that contain Eu(3+) ions chelated by terpy and bridged by tetracyanoplatinate anions. 3 is a zero-dimensional complex salt in which Eu(3+) is coordinated by terpy, acetate, and water, but not tetracyanoplatinate. The structural differences result in varying sensitization phenomena for the three compounds. Compounds 1 and 2 display efficient donor-acceptor intramolecular energy transfer (IET) where dual donor species, terpyridine and tetracyanoplatinate, simultaneously enhance the acceptor Eu(3+) emission. In both compounds the donor species are directly coordinated to the acceptor ion, and hence a highly efficient dual-donor effect is exhibited for the IET mechanisms. In 3 where only the terpy ligand is directly coordinated to Eu(3+), the sensitization involves only one donor species. The Pt(CN)(4)(2-) unit in 3, which lacks direct bonding to Eu(3+), exhibits strong emission indicating the lack of cooperative enhancement of the lanthanide emission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...