Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Plant Physiol ; 164(3): 1175-90, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24453164

RESUMO

In illuminated chloroplasts, one mechanism involved in reduction-oxidation (redox) homeostasis is the malate-oxaloacetate (OAA) shuttle. Excess electrons from photosynthetic electron transport in the form of nicotinamide adenine dinucleotide phosphate, reduced are used by NADP-dependent malate dehydrogenase (MDH) to reduce OAA to malate, thus regenerating the electron acceptor NADP. NADP-MDH is a strictly redox-regulated, light-activated enzyme that is inactive in the dark. In the dark or in nonphotosynthetic tissues, the malate-OAA shuttle was proposed to be mediated by the constitutively active plastidial NAD-specific MDH isoform (pdNAD-MDH), but evidence is scarce. Here, we reveal the critical role of pdNAD-MDH in Arabidopsis (Arabidopsis thaliana) plants. A pdnad-mdh null mutation is embryo lethal. Plants with reduced pdNAD-MDH levels by means of artificial microRNA (miR-mdh-1) are viable, but dark metabolism is altered as reflected by increased nighttime malate, starch, and glutathione levels and a reduced respiration rate. In addition, miR-mdh-1 plants exhibit strong pleiotropic effects, including dwarfism, reductions in chlorophyll levels, photosynthetic rate, and daytime carbohydrate levels, and disordered chloroplast ultrastructure, particularly in developing leaves, compared with the wild type. pdNAD-MDH deficiency in miR-mdh-1 can be functionally complemented by expression of a microRNA-insensitive pdNAD-MDH but not NADP-MDH, confirming distinct roles for NAD- and NADP-linked redox homeostasis.


Assuntos
Arabidopsis/embriologia , Arabidopsis/metabolismo , Cloroplastos/enzimologia , Processos Heterotróficos , Malato Desidrogenase/metabolismo , Sementes/embriologia , Sementes/enzimologia , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Processos Autotróficos/genética , Clorofila/metabolismo , Cloroplastos/genética , Cloroplastos/ultraestrutura , Ritmo Circadiano/genética , Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas/genética , Processos Heterotróficos/genética , Homozigoto , Malato Desidrogenase/genética , Metaboloma/genética , Morfogênese/genética , Mutagênese Insercional/genética , Fotossíntese , Transporte Proteico
2.
J Biol Chem ; 285(13): 9444-9451, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20103591

RESUMO

In plants leucine-rich repeat receptor kinases (LRR-RKs) located at the plasma membrane play a pivotal role in the perception of extracellular signals. For two of these LRR-RKs, the brassinosteroid receptor BRI1 and the flagellin receptor FLS2, interaction with the LRR receptor-like kinase BAK1 (BRI1-associated receptor kinase 1) was shown to be required for signal transduction. Here we report that FLS2.BAK1 heteromerization occurs almost instantaneously after perception of the ligand, the flagellin-derived peptide flg22. Flg22 can induce formation of a stable FLS2.BAK1 complex in microsomal membrane preparations in vitro, and the kinase inhibitor K-252a does not prevent complex formation. A kinase dead version of BAK1 associates with FLS2 in a flg22-dependent manner but does not restore responsiveness to flg22 in cells of bak1 plants, demonstrating that kinase activity of BAK1 is essential for FLS2 signaling. Furthermore, using in vivo phospholabeling, we are able to detect de novo phosphorylation of both FLS2 and BAK1 within 15 s of stimulation with flg22. Similarly, brassinolide induces BAK1 phosphorylation within seconds. Other triggers of plant defense, such as bacterial EF-Tu and the endogenous AtPep1 likewise induce rapid formation of heterocomplexes consisting of de novo phosphorylated BAK1 and proteins representing the ligand-specific binding receptors EF-Tu receptor and Pep1 receptor 1, respectively. Thus, we propose that several LRR-RKs form tight complexes with BAK1 almost instantaneously after ligand binding and that the subsequent phosphorylation events are key initial steps in signal transduction.


Assuntos
Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Fosforilação , Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Dimerização , Cinética , Ligantes , Microssomos/metabolismo , Fator Tu de Elongação de Peptídeos/química , Plantas Geneticamente Modificadas/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais , Transativadores/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...