Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 7(42): 68721-68733, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27626682

RESUMO

Low-density lipoprotein (LDL) receptor-related protein 1B (LRP1B), a member of the LDL receptor family, is frequently inactivated in multiple malignancies including lung cancer. LRP1B is therefore considered as a putative tumor suppressor. Due to its large size (4599 amino acids), until now only minireceptors or receptor fragments have been successfully cloned. To assess the effect of LRP1B on the proliferation of non-small cell lung cancer cells, we constructed and expressed a transfection vector containing the 13.800 bp full-length murine Lrp1b cDNA using a PCR-based cloning strategy. Expression of LRP1B was analyzed by quantitative RT-PCR (qRT-PCR) using primers specific for human LRP1B or mouse Lrp1b. Effective expression of the full length receptor was demonstrated by the appearance of a single 600 kDa band on Western Blots of HEK 293 cells. Overexpression of Lrp1b in non-small cell lung cancer cells with low or absent endogenous LRP1B expression significantly reduced cellular proliferation compared to empty vector-transfected control cells. Conversely, in Calu-1 cells, which express higher endogenous levels of the receptor, siRNA-mediated LRP1B knockdown significantly enhanced cellular proliferation. Taken together, these findings demonstrate that, consistent with the postulated tumor suppressor function, overexpression of full-length Lrp1b leads to impaired cellular proliferation, while LRP1B knockdown has the opposite effect. The recombinant Lrp1b construct represents a valuable tool to unravel the largely unknown physiological role of LRP1B and its potential functions in cancer pathogenesis.


Assuntos
Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Receptores de LDL/genética , Proteínas Supressoras de Tumor/genética , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos C57BL , Interferência de RNA , Receptores de LDL/metabolismo , Proteínas Recombinantes/metabolismo , Transdução de Sinais/genética , Proteínas Supressoras de Tumor/metabolismo
2.
Circulation ; 126(21): 2491-501, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23081990

RESUMO

BACKGROUND: Secretoneurin is a neuropeptide located in nerve fibers along blood vessels, is upregulated by hypoxia, and induces angiogenesis. We tested the hypothesis that secretoneurin gene therapy exerts beneficial effects in a rat model of myocardial infarction and evaluated the mechanism of action on coronary endothelial cells. METHODS AND RESULTS: In vivo secretoneurin improved left ventricular function, inhibited remodeling, and reduced scar formation. In the infarct border zone, secretoneurin induced coronary angiogenesis, as shown by increased density of capillaries and arteries. In vitro secretoneurin induced capillary tubes, stimulated proliferation, inhibited apoptosis, and activated Akt and extracellular signal-regulated kinase in coronary endothelial cells. Effects were abrogated by a vascular endothelial growth factor (VEGF) antibody, and secretoneurin stimulated VEGF receptors in these cells. Secretoneurin furthermore increased binding of VEGF to endothelial cells, and binding was blocked by heparinase, indicating that secretoneurin stimulates binding of VEGF to heparan sulfate proteoglycan binding sites. Additionally, secretoneurin increased binding of VEGF to its coreceptor neuropilin-1. In endothelial cells, secretoneurin also stimulated fibroblast growth factor receptor-3 and insulin-like growth factor-1 receptor, and in coronary vascular smooth muscle cells, we observed stimulation of VEGF receptor-1 and fibroblast growth factor receptor-3. Exposure of cardiac myocytes to hypoxia and ischemic heart after myocardial infarction revealed increased secretoneurin messenger RNA and protein. CONCLUSIONS: Our data show that secretoneurin acts as an endogenous stimulator of VEGF signaling in coronary endothelial cells by enhancing binding of VEGF to low-affinity binding sites and neuropilin-1 and stimulates further growth factor receptors like fibroblast growth factor receptor-3. Our in vivo findings indicate that secretoneurin may be a promising therapeutic tool in ischemic heart disease.


Assuntos
Modelos Animais de Doenças , Endotélio Vascular/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Neuropeptídeos/administração & dosagem , Secretogranina II/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/fisiologia , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Terapia Genética/métodos , Humanos , Infarto do Miocárdio/genética , Infarto do Miocárdio/fisiopatologia , Neovascularização Fisiológica/fisiologia , Neuropeptídeos/genética , Plasmídeos/administração & dosagem , Plasmídeos/genética , RNA Mensageiro/administração & dosagem , RNA Mensageiro/genética , Ratos , Secretogranina II/genética , Transdução de Sinais/fisiologia
3.
Peptides ; 37(2): 252-7, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22884536

RESUMO

In this study, we investigated whether the proangiogenic neuropeptides secretoneurin (SN), substance P (SP), and neuropeptide Y (NPY) contribute to the development of abnormal neovascularization in the oxygen-induced retinopathy (OIR) model in mice. By exposing litters of C57Bl/6N mice to 75% oxygen from postnatal day 7 (P7) until postnatal day 11 (P11) and then returning them to normoxic conditions, retinal ischemia and subsequent neovascularization on the retinal surface were induced. Retinae were dissected on P9, P11, P12-P14, P16 and P20, and the concentrations of SN, SP, NPY and VEGF determined by radioimmunoassay or ELISA. The levels of SN and SP increased in controls from P9 until P16 and from P9 until P14, respectively, whereas the levels of NPY were high at P9 and decreased thereafter until P20, suggesting that NPY may participate in the development of the retina. However, dipeptidyl peptidase IV (DPPIV) and the NPY-Y2 receptor were not detectable in the immature retina indicating that NPY is not involved in the physiological vascularization in the retina. Compared to controls, OIR had no effect on the levels of SN, whereas levels of both SP and NPY slightly decreased during hyperoxia. Normalization of the levels of SP, and to a more pronounced extent of NPY, was significantly delayed during relative hypoxia. This clearly indicates that these three neuropeptides are not involved in the pathogenesis of neovascularization in OIR. Moreover, since there were no differences in the expression of two vessel markers in the retina of NPY knockout mice versus controls at P14, NPY is also not involved in the delayed development of the intermediate and deep vascular plexus in the retina in this animal model.


Assuntos
Hiperóxia , Neuropeptídeo Y/análise , Neuropeptídeo Y/metabolismo , Neuropeptídeos/análise , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Secretogranina II/análise , Substância P/análise , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeo Y/deficiência , Radioimunoensaio , Retina/química
4.
Circ Res ; 107(11): 1326-35, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-20930149

RESUMO

RATIONALE: The neuropeptide catestatin is an endogenous nicotinic cholinergic antagonist that acts as a pleiotropic hormone. OBJECTIVE: Catestatin shares several functions with angiogenic factors. We therefore reasoned that catestatin induces growth of new blood vessels. METHODS AND RESULTS: Catestatin induced migration, proliferation, and antiapoptosis in endothelial cells and exerted capillary tube formation in vitro in a Matrigel assay, and such effects were mediated via G protein, mitogen-activated protein kinase, and Akt. Catestatin-induced endothelial cell functions are further mediated by basic fibroblast growth factor, as shown by blockade of effects by a neutralizing fibroblast growth factor antibody. Furthermore, catestatin released basic fibroblast growth factor from endothelial cells and stimulated fibroblast growth factor signaling. In addition to its function on endothelial cells, catestatin also exerted effects on endothelial progenitor cells and vascular smooth muscle cells. In vivo, catestatin induced angiogenesis in the mouse cornea neovascularization assay and increased blood perfusion and number of capillaries in the hindlimb ischemia model. In addition to angiogenesis, catestatin increased density of arterioles/arteries and incorporation of endothelial progenitor cells in the hindlimb ischemia model, indicating induction of arteriogenesis and postnatal vasculogenesis. CONCLUSION: We conclude that catestatin acts as a novel angiogenic cytokine via a basic fibroblast growth factor-dependent mechanism.


Assuntos
Proteínas Angiogênicas/fisiologia , Cromogranina A/fisiologia , Citocinas/fisiologia , Fator 2 de Crescimento de Fibroblastos/fisiologia , Neovascularização Fisiológica/fisiologia , Neuropeptídeos/fisiologia , Fragmentos de Peptídeos/fisiologia , Animais , Movimento Celular/fisiologia , Células Cultivadas , Endotélio Vascular/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Circ Res ; 105(10): 994-1002, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-19797703

RESUMO

RATIONALE: The neuropeptide secretoneurin induces angiogenesis and postnatal vasculogenesis and is upregulated by hypoxia in skeletal muscle cells. OBJECTIVE: We sought to investigate the effects of secretoneurin on therapeutic angiogenesis. METHODS AND RESULTS: We generated a secretoneurin gene therapy vector. In the mouse hindlimb ischemia model secretoneurin gene therapy by intramuscular plasmid injection significantly increased secretoneurin content of injected muscles, improved functional parameters, reduced tissue necrosis, and restored blood perfusion. Increased muscular density of capillaries and arterioles/arteries demonstrates the capability of secretoneurin gene therapy to induce therapeutic angiogenesis and arteriogenesis. Furthermore, recruitment of endothelial progenitor cells was enhanced by secretoneurin gene therapy consistent with induction of postnatal vasculogenesis. Additionally, secretoneurin was able to activate nitric oxide synthase in endothelial cells and inhibition of nitric oxide inhibited secretoneurin-induced effects on chemotaxis and capillary tube formation in vitro. In vivo, secretoneurin induced nitric oxide production and inhibition of nitric oxide attenuated secretoneurin-induced effects on blood perfusion, angiogenesis, arteriogenesis, and vasculogenesis. Secretoneurin also induced upregulation of basic fibroblast growth factor and platelet-derived growth factor-B in endothelial cells. CONCLUSIONS: In summary, our data indicate that gene therapy with secretoneurin induces therapeutic angiogenesis, arteriogenesis, and vasculogenesis in the hindlimb ischemia model by a nitric oxide-dependent mechanism.


Assuntos
Indutores da Angiogênese/metabolismo , Citocinas/biossíntese , Terapia Genética , Isquemia/terapia , Neovascularização Fisiológica , Neuropeptídeos/biossíntese , Óxido Nítrico/metabolismo , Secretogranina II/biossíntese , Animais , Citocinas/genética , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Membro Posterior/irrigação sanguínea , Membro Posterior/metabolismo , Humanos , Isquemia/genética , Isquemia/metabolismo , Camundongos , Neuropeptídeos/genética , Óxido Nítrico Sintase Tipo III/biossíntese , Secretogranina II/genética , Células-Tronco/metabolismo
6.
Eur J Pharmacol ; 598(1-3): 104-11, 2008 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-18834877

RESUMO

Several members of the neuropeptide family exert chemotactic actions on blood monocytes consistent with neurogenic inflammation. Furthermore, chromogranin A (CgA) containing Alzheimer plaques are characterized by extensive microglia activation and such activation induces neuronal damage. We therefore hypothesized that the catecholamine release inhibitory peptide catestatin (hCgA(352-372)) would induce directed monocyte migration. We demonstrate that catestatin dose-dependently stimulates chemotaxis of human peripheral blood monocytes, exhibiting its maximal effect at a concentration of 1 nM comparable to the established chemoattractant formylated peptide Met-Leu-Phe (fMLP). The naturally occurring catestatin variants differed in their chemotactic property insofar as that the Pro370Leu variant was even more potent than wild type, whereas the Gly364Ser variant was less effective. Specificity of this effect was shown by inhibition of catestatin-induced chemotaxis by a specific neutralizing antibody. In addition, catestatin mediated effect was blocked by dimethylsphingosine and treatment with endothelial differentiation gene (Edg)-1 and Edg-3 antisense RNA as well as by incubation with pertussis toxin and genistein indicating involvement of tyrosine kinase receptor-, G-protein- and sphingosine-1-phosphate signaling. Catestatin also stimulated Akt- and extracellular signal related kinase (ERK)-phosphorylation and catestatin-induced chemotaxis was blocked by blockers of phosphoinositide-3 (PI-3) kinase and nitric oxide as well as by inhibition of the mitogen-activated protein kinases (MAPK) system indicating involvement of these signal transduction pathways. In summary, our data indicate that catestatin induces monocyte chemotaxis by activation of a variety of signal transduction pathways suggesting a role of this peptide as an inflammatory cytokine.


Assuntos
Cromogranina A/farmacologia , Monócitos/fisiologia , Fragmentos de Peptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Western Blotting , Movimento Celular/efeitos dos fármacos , Quimiotaxia de Leucócito/efeitos dos fármacos , Cromogranina A/genética , Ativação Enzimática/efeitos dos fármacos , Genisteína/farmacologia , Humanos , Infiltração de Neutrófilos/efeitos dos fármacos , Fragmentos de Peptídeos/genética , Toxina Pertussis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Transfecção
7.
FASEB J ; 21(11): 2906-17, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17504977

RESUMO

Expression of angiogenic cytokines like vascular endothelial growth factor is enhanced by hypoxia. We tested the hypothesis that decreased oxygen levels up-regulate the angiogenic factor secretoneurin. In vivo, muscle cells of mouse ischemic hind limbs showed increased secretoneurin expression, and inhibition of secretoneurin by a neutralizing antibody impaired the angiogenic response in this ischemia model. In a mouse soft tissue model of hypoxia, secretoneurin was increased in subcutaneous muscle fibers. In vitro, secretoneurin mRNA and protein were up-regulated in L6 myoblast cells after exposure to low oxygen levels. The hypoxia-dependent regulation of secretoneurin was tissue specific and was not observed in endothelial cells, vascular smooth muscle cells, or AtT20 pituitary tumor cells. The hypoxia-dependent induction of secretoneurin in L6 myoblasts is regulated by hypoxia-inducible factor-1alpha, since inhibition of this factor using si-RNA inhibited up-regulation of secretoneurin. Induction of secretoneurin by hypoxia was dependent on basic fibroblast growth factor in vivo and in vitro, and inhibition of this regulation by heparinase suggests an involvement of low-affinity basic fibroblast growth factor binding sites. In summary, our data show that the angiogenic cytokine secretoneurin is up-regulated by hypoxia in muscle cells by hypoxia-inducible factor-1alpha- and basic fibroblast growth factor-dependent mechanisms.


Assuntos
Hipóxia Celular , Fator 2 de Crescimento de Fibroblastos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mioblastos/metabolismo , Neuropeptídeos/metabolismo , Secretogranina II/metabolismo , Transdução de Sinais , Animais , Western Blotting , Células Cultivadas , Primers do DNA/química , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Extremidades/cirurgia , Imunofluorescência , Isquemia/metabolismo , Isquemia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/irrigação sanguínea , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , NAD/metabolismo , Neovascularização Fisiológica , Neoplasias Hipofisárias/irrigação sanguínea , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/patologia , Reação em Cadeia da Polimerase , Pró-Proteína Convertases/metabolismo , RNA Interferente Pequeno/farmacologia , Radioimunoensaio , Ratos , Pele/metabolismo , Transfecção , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...