Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 6(11): e26404, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22102861

RESUMO

We investigated the ability of bacterial communities to colonize and dissolve two biogenic carbonates (Foraminifera and oyster shells). Bacterial carbonate dissolution in the upper water column is postulated to be driven by metabolic activity of bacteria directly colonising carbonate surfaces and the subsequent development of acidic microenvironments. We employed a combination of microsensor measurements, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and image analysis and molecular documentation of colonising bacteria to monitor microbial processes and document changes in shell surface topography. Bacterial communities rapidly colonised shell surfaces, forming dense biofilms with extracellular polymeric substance (EPS) deposits. Despite this, we found no evidence of bacterially mediated carbonate dissolution. Dissolution was not indicated by Ca²âº microprofiles, nor was changes in shell surface structure related to the presence of colonizing bacteria. Given the short time (days) settling carbonate material is actually in the twilight zone (500-1000 m), it is highly unlikely that microbial metabolic activity on directly colonised shells plays a significant role in dissolving settling carbonates in the shallow ocean.


Assuntos
Fenômenos Fisiológicos Bacterianos , Carbonato de Cálcio/metabolismo , Sedimentos Geológicos/microbiologia , Plâncton/metabolismo , Biofilmes/crescimento & desenvolvimento , Microscopia Confocal , Microscopia Eletrônica de Varredura
2.
Environ Microbiol ; 13(12): 3194-205, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21651683

RESUMO

In this study, members of a specific group of thin (6-14 µm filament diameter), vacuolated Beggiatoa-like filaments from six different hypersaline microbial mats were morphologically and phylogenetically characterized. Therefore, enrichment cultures were established, filaments were stained with fluorochromes to show intracellular structures and 16S rRNA genes were sequenced. Morphological characteristics of Beggiatoa-like filaments, in particular the presence of intracellular vacuoles, and the distribution of nucleic acids were visualized. In the intracellular vacuole nitrate reached concentrations of up to 650 mM. Fifteen of the retrieved 16S rRNA gene sequences formed a monophyletic cluster and were phylogenetically closely related (≥ 94.4% sequence identity). Sequences of known filamentous sulfide-oxidizing genera Beggiatoa and Thioploca that comprise non-vacuolated and vacuolated filaments from diverse habitats clearly delineated from this cluster. The novel monophyletic cluster was furthermore divided into two sub-clusters: one contained sequences originating from Guerrero Negro (Mexico) microbial mats and the other comprised sequences from five distinct Spanish hypersaline microbial mats from Ibiza, Formentera and Lake Chiprana. Our data suggest that Beggiatoa-like filaments from hypersaline environments displaying a thin filament diameter contain nitrate-storing vacuoles and are phylogenetically separate from known Beggiatoa. Therefore, we propose a novel genus for these organisms, which we suggest to name 'Candidatus Allobeggiatoa'.


Assuntos
Beggiatoa/classificação , Meio Ambiente , Filogenia , Salinidade , Microbiologia da Água , Beggiatoa/genética , Beggiatoa/isolamento & purificação , Lagos/microbiologia , México , Nitratos/análise , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Espanha , Thiotrichaceae/classificação , Thiotrichaceae/genética , Vacúolos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA