Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 125(47): 10165-10173, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34797986

RESUMO

We employ photoluminescence (PL) spectroscopy on individual nanoscale aggregates of the conjugated polymer poly(3-hexylthiophene), P3HT, at room temperature (RT) and at low temperature (LT) (1.5 K), to unravel different levels of structural and electronic disorder within P3HT nanoparticles. The aggregates are prepared by self-assembly of the block copolymer P3HT-block-poly(ethylene glycol) (P3HT-b-PEG) into micelles, with the P3HT aggregates constituting the micelles' core. Irrespective of temperature, we find from the intensity ratio between the 0-1 and 0-0 peaks in the PL spectra that the P3HT aggregates are of H-type nature, as expected from π-stacked conjugated thiophene backbones. Moreover, the distributions of the PL peak ratios demonstrate a large variation of disorder between micelles (inter-aggregate disorder) and within individual aggregates (intra-aggregate disorder). Upon cooling from RT to LT, the PL spectra red-shift by 550 cm-1, and the energy of the (effective) carbon-bond stretch mode is reduced by 100 cm-1. These spectral changes indicate that the P3HT backbone in the P3HT-b-PEG copolymer does not fully planarize before aggregation at RT and that upon cooling, partial planarization occurs. This intra-chain torsional disorder is ultimately responsible for the intra- and inter-aggregate disorder. These findings are supported by temperature-dependent absorption spectra on thin P3HT films. The interplay between intra-chain, intra-aggregate, and inter-aggregate disorder is key for the bulk photophysical properties of nanoparticles based on conjugated polymers, for example, in hierarchical (super-) structures. Ultimately, these properties determine the usefulness of such structures in hybrid organic-inorganic materials, for example, in (bio-)sensing and optoelectronics applications.

2.
Front Psychol ; 11: 918, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457688

RESUMO

Technology is changing the way organizations and their employees need to accomplish their work. Empirical evidence on this topic is scarce. The aim of this study is to provide an overview of the effects of technological developments on work characteristics and to derive the implications for work demands and continuous vocational education and training (CVET). The following research questions are answered: What are the effects of new technologies on work characteristics? What are the implications thereof for continuous vocational education and training? Technologies, defined as digital, electrical or mechanical tools that affect the accomplishment of work tasks, are considered in various disciplines, such as sociology or psychology. A theoretical framework based on theories from these disciplines (e.g., upskilling, task-based approach) was developed and statements on the relationships between technology and work characteristics, such as complexity, autonomy, or meaningfulness, were derived. A systematic literature review was conducted by searching databases from the fields of psychology, sociology, economics and educational science. Twenty-one studies met the inclusion criteria. Empirical evidence was extracted and its implications for work demands and CVET were derived by using a model that illustrates the components of learning environments. Evidence indicates an increase in complexity and mental work, especially while working with automated systems and robots. Manual work is reported to decrease on many occasions. Workload and workflow interruptions increase simultaneously with autonomy, especially with regard to digital communication devices. Role expectations and opportunities for development depend on how the profession and the technology relate to each other, especially when working with automated systems. The implications for the work demands necessary to deal with changes in work characteristics include knowledge about technology, openness toward change and technology, skills for self- and time management and for further professional and career development. Implications for the design of formal learning environments (i.e., the content, method, assessment, and guidance) include that the work demands mentioned must be part of the content of the trainings, the teachers/trainers must be equipped to promote those work demands, and that instruction models used for the learning environments must be flexible in their application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...