Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 68(20): 8410-8, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18922914

RESUMO

Encounter of self-antigens in the periphery by mature T cells induces tolerance in the steady-state. Hence, it is not understood why the same peripheral antigens are also promiscuously expressed in the thymus to mediate central tolerance. Here, we analyzed CD8(+) T-cell tolerance to such an antigen constituted by ovalbumin under the control of the tyrosinase promoter. As expected, endogenous CD8(+) T-cell responses were altered in the periphery of transgenic mice, resulting from promiscuous expression of the self-antigen in mature medullary epithelial cells and deletion of high-affinity T cells in the thymus. In adoptive T-cell transfer experiments, we observed constitutive presentation of the self-antigen in peripheral lymph nodes. Notably, this self-antigen presentation induced persisting cytotoxic cells from high-affinity CD8(+) T-cell precursors. Lymph node resident melanoblasts expressing tyrosinase directly presented the self-antigen to CD8(+) T cells, independently of bone marrow-derived antigen-presenting cells. This peripheral priming was independent of the subcellular localization of the self-antigen, indicating that this mechanism may apply to other melanocyte-associated antigens. Hence, central tolerance by promiscuous expression of peripheral antigens is a mandatory, rather than a superfluous, mechanism to counteract the peripheral priming, at least for self-antigens that can be directly presented in lymph nodes. The peripheral priming by lymph node melanoblasts identified here may constitute an advantage for immunotherapies based on adoptive T-cell transfer.


Assuntos
Apresentação de Antígeno , Autoantígenos/imunologia , Linfonodos/imunologia , Melanócitos/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Imunoterapia , Melanoma/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Ovalbumina/genética , Ovalbumina/imunologia
2.
J Immunol ; 170(5): 2390-8, 2003 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-12594262

RESUMO

A sizable fraction of T cells expressing the NK cell marker NK1.1 (NKT cells) bear a very conserved TCR, characterized by homologous invariant (inv.) TCR V alpha 24-J alpha Q and V alpha 14-J alpha 18 rearrangements in humans and mice, respectively, and are thus defined as inv. NKT cells. Because human inv. NKT cells recognize mouse CD1d in vitro, we wondered whether a human inv. V alpha 24 TCR could be selected in vivo by mouse ligands presented by CD1d, thereby supporting the development of inv. NKT cells in mice. Therefore, we generated transgenic (Tg) mice expressing the human inv. V alpha 24-J alpha Q TCR chain in all T cells. The expression of the human inv. V alpha 24 TCR in TCR C alpha(-/-) mice indeed rescues the development of inv. NKT cells, which home preferentially to the liver and respond to the CD1d-restricted ligand alpha-galactosylceramide (alpha-GalCer). However, unlike inv. NKT cells from non-Tg mice, the majority of NKT cells in V alpha 24 Tg mice display a double-negative phenotype, as well as a significant increase in TCR V beta 7 and a corresponding decrease in TCR V beta 8.2 use. Despite the forced expression of the human CD1d-restricted TCR in C alpha(-/-) mice, staining with mCD1d-alpha-GalCer tetramers reveals that the absolute numbers of peripheral CD1d-dependent T lymphocytes increase at most by 2-fold. This increase is accounted for mainly by an increased fraction of NK1.1(-) T cells that bind CD1d-alpha-GalCer tetramers. These findings indicate that human inv. V alpha 24 TCR supports the development of CD1d-dependent lymphocytes in mice, and argue for a tight homeostatic control on the total number of inv. NKT cells. Thus, human inv. V alpha 24 TCR-expressing mice are a valuable model to study different aspects of the inv. NKT cell subset.


Assuntos
Antígenos CD1/fisiologia , Antígenos de Diferenciação de Linfócitos B/fisiologia , Antígenos/biossíntese , Antígenos de Histocompatibilidade Classe II/fisiologia , Células Matadoras Naturais/imunologia , Camundongos Transgênicos/imunologia , Biossíntese de Proteínas , Proteínas , Receptores de Antígenos de Linfócitos T alfa-beta/fisiologia , Subpopulações de Linfócitos T/imunologia , Animais , Antígenos CD1d , Antígenos de Diferenciação de Linfócitos B/biossíntese , Antígenos de Diferenciação de Linfócitos B/genética , Antígenos Ly , Antígenos de Superfície , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Células Cultivadas , Epitopos de Linfócito T/imunologia , Galactosilceramidas/imunologia , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Rearranjo Gênico da Cadeia beta dos Receptores de Antígenos dos Linfócitos T/genética , Genes Codificadores da Cadeia alfa de Receptores de Linfócitos T/genética , Genes Codificadores da Cadeia alfa de Receptores de Linfócitos T/fisiologia , Antígenos de Histocompatibilidade Classe II/biossíntese , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Regiões Constantes de Imunoglobulina/genética , Imunofenotipagem , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Lectinas Tipo C , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Subfamília B de Receptores Semelhantes a Lectina de Células NK , Receptores de Antígenos de Linfócitos T alfa-beta/biossíntese , Receptores de Antígenos de Linfócitos T alfa-beta/deficiência , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...