Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1386824, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011307

RESUMO

The occurring temperature increase in crop production areas worldwide is generating conditions of heat stress that negatively affect crop productivity. Tomato (Solanum lycopersicum), a major vegetable crop, is highly susceptible to elevated temperatures. Under such conditions, fruit set is dramatically reduced, leading to significant yield losses. Solanum pimpinellifolium, a wild species closely related to the cultivated tomato, was shown to have beneficial attributes under various abiotic stress growth conditions. We have utilized a new population of backcross inbred lines originated from a cross between S. pimpinellifolium and S. lycopersicum, in order to evaluate its potential as a new genetic resource for improvement of reproductive performance of cultivated tomato under heat stress conditions. This population was screened for various heat stress-related traits, under controlled heat stress and non-stress conditions. Our results show that significant variation exists for all the heat stress related traits that were examined and point at individual lines with better reproductive performance under heat stress conditions that share a common introgression from the wild S. pimpinellifolium parent, suggesting several candidate genes as potential drivers of thermotolerance. Thus, our results place this population as a valuable new resource for the discovery of heat stress related genetic loci for the future development of heat stress tolerant tomato cultivars.

2.
AoB Plants ; 13(4): plab046, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34394907

RESUMO

Climate change is causing temperature increment in crop production areas worldwide, generating conditions of heat stress that negatively affect crop productivity. Tomato (Solanum lycopersicum), a major vegetable crop, is highly susceptible to conditions of heat stress. When tomato plants are exposed to ambient day/night temperatures that exceed 32 °C/20 °C, respectively, during the reproductive phase, fruit set and fruit weight are reduced, leading to a significant decrease in yield. Processing tomato cultivars are cultivated in open fields, where environmental conditions are not controlled; therefore, plants are exposed to multiple abiotic stresses, including heat stress. Nonetheless, information on stress response in processing tomatoes is very limited. Understanding the physiological response of modern processing tomato cultivars to heat stress may facilitate the development of thermotolerant cultivars. Here, we compared two tomato processing cultivars, H4107 and H9780, that we found to be constantly differing in yield performance. Using field and temperature-controlled greenhouse experiments, we show that the observed difference in yield is attributed to the occurrence of heat stress conditions. In addition, fruit set and seed production were significantly higher in the thermotolerant cultivar H4107, compared with H9780. Despite the general acceptance of pollen viability as a measure of thermotolerance, there was no difference in the percentage of viable pollen between H4107 and H9780 under either of the conditions tested. In addition to observations of similar pollen germination and bud abscission rates, our results suggest that processing tomato cultivars may present a particular case, in which pollen performance is not determining reproductive thermotolerance. Our results also demonstrate the value of combining controlled and uncontrolled experimental settings, in order to validate and identify heat stress-related responses, thus facilitating the development of thermotolerant processing tomato cultivars.

3.
Front Plant Sci ; 9: 1558, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483278

RESUMO

Heat stress is a major cause for yield loss in many crops, including vegetable crops. Even short waves of high temperature, becoming more frequent during recent years, can be detrimental. Pollen development is most heat-sensitive, being the main cause for reduced productivity under heat-stress across a wide range of crops. The molecular mechanisms involved in pollen heat-stress response and thermotolerance are however, not fully understood. Recently, we have demonstrated that ethylene, a gaseous plant hormone, plays a role in tomato (Solanum lycopersicum) pollen thermotolerance. These results were substantiated in the current work showing that increasing ethylene levels by using an ethylene-releasing substance, ethephon, prior to heat-stress exposure, increased pollen quality. A proteomic approach was undertaken, to unravel the mechanisms underlying pollen heat-stress response and ethylene-mediated pollen thermotolerance in developing pollen grains. Proteins were extracted and analyzed by means of a gel LC-MS fractionation protocol, and a total of 1,355 proteins were identified. A dataset of 721 proteins, detected in three biological replicates of at least one of the applied treatments, was used for all analyses. Quantitative analysis was performed based on peptide count. The analysis revealed that heat-stress affected the developmental program of pollen, including protein homeostasis (components of the translational and degradation machinery), carbohydrate, and energy metabolism. Ethephon-pre-treatment shifted the heat-stressed pollen proteome closer to the proteome under non-stressful conditions, namely, by showing higher abundance of proteins involved in protein synthesis, degradation, tricarboxylic acid cycle, and RNA regulation. Furthermore, up-regulation of protective mechanisms against oxidative stress was observed following ethephon-treatment (including higher abundance of glutathione-disulfide reductase, glutaredoxin, and protein disulfide isomerase). Taken together, the findings identified systemic and fundamental components of pollen thermotolerance, and serve as a valuable quantitative protein database for further research.

4.
Plant Reprod ; 31(4): 367-383, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29948007

RESUMO

KEY MESSAGE: Tomato pollen grains have the capacity for ethylene production, possessing specific components of the ethylene-biosynthesis and -signaling pathways, being affected/responsive to high-temperature conditions. Exposure of plants to heat stress (HS) conditions reduces crop yield and quality, mainly due to sensitivity of pollen grains. Recently, it was demonstrated that ethylene, a gaseous plant hormone, plays a significant role in tomato pollen heat-tolerance. It is not clear, however, whether, or to what extent, pollen grains are dependent on the capacity of the surrounding anther tissues for ethylene synthesis and signaling, or can synthesize this hormone and possess an active signaling pathway. The aim of this work was (1) to investigate if isolated, maturing and mature, tomato pollen grains have the capacity for ethylene production, (2) to find out whether pollen grains possess an active ethylene-biosynthesis and -signaling pathway and characterize the respective tomato pollen components at the transcript level, (3) to look into the effect of short-term HS conditions. Results from accumulation studies showed that pollen, anthers, and flowers produced ethylene and HS affected differentially ethylene production by (rehydrated) mature pollen, compared to anthers and flowers, causing elevated ethylene levels. Furthermore, several ethylene synthesis genes were expressed, with SlACS3 and SlACS11 standing out as highly HS-induced genes of the pollen ethylene biosynthesis pathway. Specific components of the ethylene-signaling pathway as well as several ethylene-responsive factors were expressed in pollen, with SlETR3 (ethylene receptor; named also NR, for never ripe) and SlCTR2 (constitutive triple response2) being HS responsive. This work shows that tomato pollen grains have the capacity for ethylene production, possessing active ethylene-biosynthesis and -signaling pathways, highlighting specific pollen components that serve as a valuable resource for future research on the role of ethylene in pollen thermotolerance.


Assuntos
Etilenos/biossíntese , Pólen/metabolismo , Solanum lycopersicum/fisiologia , Termotolerância , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Pólen/crescimento & desenvolvimento , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...