Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Image Process ; 17(7): 1212-25, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18586628

RESUMO

This paper addresses the construction of a novel efficient rotation-invariant texture retrieval method that is based on the alignment in angle of signatures obtained via a steerable sub-Gaussian model. In our proposed scheme, we first construct a steerable multivariate sub-Gaussian model, where the fractional lower-order moments of a given image are associated with those of its rotated versions. The feature extraction step consists of estimating the so-called covariations between the orientation subbands of the corresponding steerable pyramid at the same or at adjacent decomposition levels and building an appropriate signature that can be rotated directly without the need of rotating the image and recalculating the signature. The similarity measurement between two images is performed using a matrix-based norm that includes a signature alignment in angle between the images being compared, achieving in this way the desired rotation-invariance property. Our experimental results show how this retrieval scheme achieves a lower average retrieval error, as compared to previously proposed methods having a similar computational complexity, while at the same time being competitive with the best currently known state-of-the-art retrieval system. In conclusion, our retrieval method provides the best compromise between complexity and average retrieval performance.


Assuntos
Algoritmos , Inteligência Artificial , Interpretação de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Técnica de Subtração , Simulação por Computador , Aumento da Imagem/métodos , Modelos Estatísticos , Distribuição Normal , Rotação
2.
IEEE Trans Image Process ; 16(7): 1761-73, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17605375

RESUMO

The standard separable 2-D wavelet transform (WT) has recently achieved a great success in image processing because it provides a sparse representation of smooth images. However, it fails to efficiently capture 1-D discontinuities, like edges or contours. These features, being elongated and characterized by geometrical regularity along different directions, intersect and generate many large magnitude wavelet coefficients. Since contours are very important elements in the visual perception of images, to provide a good visual quality of compressed images, it is fundamental to preserve good reconstruction of these directional features. In our previous work, we proposed a construction of critically sampled perfect reconstruction transforms with directional vanishing moments imposed in the corresponding basis functions along different directions, called directionlets. In this paper, we show how to design and implement a novel efficient space-frequency quantization (SFQ) compression algorithm using directionlets. Our new compression method outperforms the standard SFQ in a rate-distortion sense, both in terms of mean-square error and visual quality, especially in the low-rate compression regime. We also show that our compression method, does not increase the order of computational complexity as compared to the standard SFQ algorithm.


Assuntos
Algoritmos , Compressão de Dados/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador , Gravação em Vídeo/métodos , Gráficos por Computador/normas , Análise Numérica Assistida por Computador
3.
IEEE Trans Image Process ; 15(9): 2702-18, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16948315

RESUMO

This paper presents a novel rotation-invariant image retrieval scheme based on a transformation of the texture information via a steerable pyramid. First, we fit the distribution of the subband coefficients using a joint alpha-stable sub-Gaussian model to capture their non-Gaussian behavior. Then, we apply a normalization process in order to Gaussianize the coefficients. As a result, the feature extraction step consists of estimating the covariances between the normalized pyramid coefficients. The similarity between two distinct texture images is measured by minimizing a rotation-invariant version of the Kullback-Leibler Divergence between their corresponding multivariate Gaussian distributions, where the minimization is performed over a set of rotation angles.


Assuntos
Algoritmos , Inteligência Artificial , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Armazenamento e Recuperação da Informação/métodos , Reconhecimento Automatizado de Padrão/métodos , Simulação por Computador , Modelos Estatísticos , Distribuição Normal
4.
IEEE Trans Image Process ; 15(7): 1916-33, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16830912

RESUMO

In spite of the success of the standard wavelet transform (WT) in image processing in recent years, the efficiency of its representation is limited by the spatial isotropy of its basis functions built in the horizontal and vertical directions. One-dimensional (1-D) discontinuities in images (edges and contours) that are very important elements in visual perception, intersect too many wavelet basis functions and lead to a nonsparse representation. To efficiently capture these anisotropic geometrical structures characterized by many more than the horizontal and vertical directions, a more complex multidirectional (M-DIR) and anisotropic transform is required. We present a new lattice-based perfect reconstruction and critically sampled anisotropic M-DIR WT. The transform retains the separable filtering and subsampling and the simplicity of computations and filter design from the standard two-dimensional WT, unlike in the case of some other directional transform constructions (e.g., curvelets, contourlets, or edgelets). The corresponding anisotropic basis unctions (directionlets) have directional vanishing moments along any two directions with rational slopes. Furthermore, we show that this novel transform provides an efficient tool for nonlinear approximation of images, achieving the approximation power O(N(-1.55)), which, while slower than the optimal rate O(N(-2)), is much better than O(N(-1)) achieved with wavelets, but at similar complexity.


Assuntos
Algoritmos , Artefatos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Armazenamento e Recuperação da Informação/métodos , Modelos Estatísticos , Processamento de Sinais Assistido por Computador , Anisotropia , Gráficos por Computador , Simulação por Computador , Filtração/métodos , Análise Numérica Assistida por Computador , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...