Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 108(3-2): 035202, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37849193

RESUMO

Strong shocks are essential components in many high-energy-density environments such as inertial confinement fusion implosions. However, the experimental measurements of the spatial structures of such shocks are sparse. In this paper, the soft x-ray emission of a shock front in a helium gas mixture (90% helium, 10% neon) and a pure neon gas was spatially resolved using an imaging spectrometer. We observe that the shock width in the helium mixture gas is about twice as large as in the pure neon gas. Moreover, they exhibit different precursor layers, where electron temperature greatly exceeds ion temperature, extending for more than ∼350µm with the helium gas mixture but less than 30µm in the pure neon. At the shock front, calculations show that the electrons are strongly collisional with mean-free path two orders of magnitude shorter than the characteristic length of the shock. However, the helium ions can reach a kinetic regime as a consequence of their mean-free path being comparable to the scale of the shock. A radiation-hydrodynamic simulation demonstrates the impact of thermal conduction on the formation of the precursors with charge state, Z, playing a major role in heat flow and the precursor formation in both the helium mixture and the pure neon gases. Particle-in-cell simulations are also performed to study the ion kinetic effects on the formation of the observed precursors. A group of fast-streaming ions is observed leading the shock only in the helium gas mixture. Both effects explain the longer precursor layer in the helium shock.

2.
Rev Sci Instrum ; 93(11): 113542, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461474

RESUMO

Magnetization of inertial confinement implosions is a promising means of improving their performance, owing to the potential reduction of energy losses within the target and mitigation of hydrodynamic instabilities. In particular, cylindrical implosions are useful for studying the influence of a magnetic field, thanks to their axial symmetry. Here, we present experimental results from cylindrical implosions on the OMEGA-60 laser using a 40-beam, 14.5 kJ, 1.5 ns drive and an initial seed magnetic field of B0 = 30 T along the axes of the targets, compared with reference results without an imposed B-field. Implosions were characterized using time-resolved x-ray imaging from two orthogonal lines of sight. We found that the data agree well with magnetohydrodynamic simulations, once radiation transport within the imploding plasma is considered. We show that for a correct interpretation of the data in these types of experiments, explicit radiation transport must be taken into account.

3.
Rev Sci Instrum ; 93(11): 115102, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461483

RESUMO

Talbot-Lau x-ray interferometry is a refraction-based diagnostic that can map electron density gradients through phase-contrast methods. The Talbot-Lau x-ray deflectometry (TXD) diagnostics have been deployed in several high energy density experiments. To improve diagnostic performance, a monochromatic TXD was implemented on the Multi-Tera Watt (MTW) laser using 8 keV multilayer mirrors (Δθ/θ = 4.5%-5.6%). Copper foil and wire targets were irradiated at 1014-1015 W/cm2. Laser pulse length (∼10 to 80 ps) and backlighter target configurations were explored in the context of Moiré fringe contrast and spatial resolution. Foil and wire targets delivered increased contrast <30%. The best spatial resolution (<6 µm) was measured for foils irradiated 80° from the surface. Further TXD diagnostic capability enhancement was achieved through the development of advanced data postprocessing tools. The Talbot Interferometry Analysis (TIA) code enabled x-ray refraction measurements from the MTW monochromatic TXD. Additionally, phase, attenuation, and dark-field maps of an ablating x-pinch load were retrieved through TXD. The images show a dense wire core of ∼60 µm diameter surrounded by low-density material of ∼40 µm thickness with an outer diameter ratio of ∼2.3. Attenuation at 8 keV was measured at ∼20% for the dense core and ∼10% for the low-density material. Instrumental and experimental limitations for monochromatic TXD diagnostics are presented. Enhanced postprocessing capabilities enabled by TIA are demonstrated in the context of high-intensity laser and pulsed power experimental data analysis. Significant advances in TXD diagnostic capabilities are presented. These results inform future diagnostic technique upgrades that will improve the accuracy of plasma characterization through TXD.

4.
Phys Rev E ; 106(5-2): 055205, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36559494

RESUMO

The collisionless ion-Weibel instability is a leading candidate mechanism for the formation of collisionless shocks in many astrophysical systems, where the typical distance between particle collisions is much larger than the system size. Multiple laboratory experiments aimed at studying this process utilize laser-driven (I≳10^{15} W/cm^{2}), counterstreaming plasma flows (V≲2000 km/s) to create conditions unstable to Weibel-filamentation and growth. This technique intrinsically produces temporally varying plasma conditions at the midplane of the interaction where Weibel-driven B fields are generated and studied. Experiments discussed herein demonstrate robust formation of Weibel-driven B fields under multiple plasma conditions using CH, Al, and Cu plasmas. Linear theory based on benchmarked radiation-hydrodynamic FLASH calculations is compared with Fourier analyses of proton images taken ∼5-6 linear growth times into the evolution. The new analyses presented here indicate that the low-density, high-velocity plasma-conditions present during the first linear-growth time (∼300-500 ps) sets the spectral characteristics of Weibel filaments during the entire evolution. It is shown that the dominant wavelength (∼300µm) at saturation persists well into the nonlinear phase, consistent with theory under these experimental conditions. However, estimates of B-field strength, while difficult to determine accurately due to the path-integrated nature of proton imaging, are shown to be in the ∼10-30 T range, an order of magnitude above the expected saturation limit in homogenous plamas but consistent with enhanced B fields in the midplane due to temporally varying plasma conditions in experiments.

5.
Phys Rev E ; 106(3-2): 035206, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36266806

RESUMO

Investigating the potential benefits of the use of magnetic fields in inertial confinement fusion experiments has given rise to experimental platforms like the Magnetized Liner Inertial Fusion approach at the Z-machine (Sandia National Laboratories) or its laser-driven equivalent at OMEGA (Laboratory for Laser Energetics). Implementing these platforms at MegaJoule-scale laser facilities, such as the Laser MegaJoule (LMJ) or the National Ignition Facility (NIF), is crucial to reaching self-sustained nuclear fusion and enlarges the level of magnetization that can be achieved through a higher compression. In this paper, we present a complete design of an experimental platform for magnetized implosions using cylindrical targets at LMJ. A seed magnetic field is generated along the axis of the cylinder using laser-driven coil targets, minimizing debris and increasing diagnostic access compared with pulsed power field generators. We present a comprehensive simulation study of the initial B field generated with these coil targets, as well as two-dimensional extended magnetohydrodynamics simulations showing that a 5 T initial B field is compressed up to 25 kT during the implosion. Under these circumstances, the electrons become magnetized, which severely modifies the plasma conditions at stagnation. In particular, in the hot spot the electron temperature is increased (from 1 keV to 5 keV) while the density is reduced (from 40g/cm^{3} to 7g/cm^{3}). We discuss how these changes can be diagnosed using x-ray imaging and spectroscopy, and particle diagnostics. We propose the simultaneous use of two dopants in the fuel (Ar and Kr) to act as spectroscopic tracers. We show that this introduces an effective spatial resolution in the plasma which permits an unambiguous observation of the B-field effects. Additionally, we present a plan for future experiments of this kind at LMJ.

6.
Rev Sci Instrum ; 93(8): 083509, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050081

RESUMO

In this study, we present the absolute calibration of the conical crystal for the zinc spectrometer (ZSPEC), an x-ray spectrometer at the OMEGA laser facility at the Laboratory for Laser Energetics. The ZSPEC was originally designed to measure x-ray Thomson scattering using flat or cylindrically curved highly oriented pyrolytic graphite crystals centered around Zn He-alpha emission at 9 keV. To improve the useful spectral range and collection efficiency of the ZSPEC, a conical highly annealed pyrolytic graphite crystal was fabricated for the ZSPEC. The conically bent crystal in the Hall geometry produces a line focus perpendicular to the spectrometer axis, corresponding to the detector plane of electronic detectors at large scale laser facilities such as OMEGA, extending the useful range of the spectrometer to 7-11 keV. Using data collected using a microfocus Mo x-ray source, we determine important characteristics of ZSPEC such as the dispersion, spatial resolution, and absolute sensitivity of the instrument. A ray-trace model of ZSPEC provides another point of agreement in calculations of the ZSPEC dispersion and crystal response.

7.
Phys Rev E ; 105(5-2): 055206, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35706166

RESUMO

Laser-accelerated proton beams are applicable to several research areas within high-energy density science, including warm dense matter generation, proton radiography, and inertial confinement fusion, which all involve transport of the beam through matter. We report on experimental measurements of intense proton beam transport through plastic foam blocks. The intense proton beam was accelerated by the 10ps, 700J OMEGA EP laser irradiating a curved foil target, and focused by an attached hollow cone. The protons then entered the foam block of density 0.38g/cm^{3} and thickness 0.55 or 1.00mm. At the rear of the foam block, a Cu layer revealed the cross section of the intense beam via proton- and hot electron-induced Cu-K_{α} emission. Images of x-ray emission show a bright spot on the rear Cu film indicative of a forward-directed beam without major breakup. 2D fluid-PIC simulations of the transport were conducted using a unique multi-injection source model incorporating energy-dependent beam divergence. Along with postprocessed calculations of the Cu-K_{α} emission profile, simulations showed that protons retain their ballistic transport through the foam and are able to heat the foam up to several keV in temperature. The total experimental emission profile for the 1.0mm foam agrees qualitatively with the simulated profile, suggesting that the protons indeed retain their beamlike qualities.

8.
Nat Commun ; 13(1): 2893, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610200

RESUMO

Ion stopping in warm dense matter is a process of fundamental importance for the understanding of the properties of dense plasmas, the realization and the interpretation of experiments involving ion-beam-heated warm dense matter samples, and for inertial confinement fusion research. The theoretical description of the ion stopping power in warm dense matter is difficult notably due to electron coupling and degeneracy, and measurements are still largely missing. In particular, the low-velocity stopping range, that features the largest modelling uncertainties, remains virtually unexplored. Here, we report proton energy-loss measurements in warm dense plasma at unprecedented low projectile velocities. Our energy-loss data, combined with a precise target characterization based on plasma-emission measurements using two independent spectroscopy diagnostics, demonstrate a significant deviation of the stopping power from classical models in this regime. In particular, we show that our results are in closest agreement with recent first-principles simulations based on time-dependent density functional theory.

9.
Phys Rev E ; 105(4-2): 045205, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35590572

RESUMO

The gas-puff Z pinch has a long history with myriad applications as an efficient neutron or x-ray source. Its simplicity as a load configuration makes it suitable for studying fundamental plasma physics phenomena such as instabilities and energy transport. For example, the implosion of cylindrical shells onto a fusion fuel are inherently susceptible to instability growth on their external surfaces; if such instabilities are unmitigated, then the consequences in terms of degraded performance can be substantial. Similarly, mitigating heat transport from a hot fuel to its colder surrounding container can make fusion conditions more easily achievable. Here we have conducted a systematic study of triple-nozzle (outer liner, inner liner, fuel) gas puffs using two-dimensional (2D) magnetohydrodynamic simulations to investigate the effect of load material on the relevant dynamics. Analogous to past studies on spherical blast waves and converging shock waves, a trend emerges linking increased radiative cooling, lower adiabatic index, and increased magneto-Rayleigh-Taylor instability growth. Notably, our results suggest that, for the present configuration, Ar radiates less than both Ne and Kr during the early stages of the implosion while mass is being swept up and perturbations begin to seed instability growth. Consequently, pinches with Ar on the outer surface exhibit more stable 2D behavior. Here we also present a parameter scan of thermonuclear neutron yield, Y, as a function of peak current, I_{pk} and dopant concentration with Ne or Ar, depending on the inner liner material. Above 6 MA, our results suggest Y∝I_{pk}^{5} and even substantial mixing (10% by volume) of Ne into the fuel does not drastically reduce yield, suggesting an Ar/Ne/fuel configuration may reliably achieve DD thermonuclear yields of 10^{13}-10^{14}/cm in the 10-20 MA range.

10.
Phys Rev E ; 104(2): L023201, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34525596

RESUMO

The gas-puff Z-pinch is a well-known source of x-rays and/or neutrons, but it is highly susceptible to the magneto-Rayleigh-Taylor instability (MRTI). Approaches to MRTI mitigation include density profile tailoring, in which nozzles are added or modified to alter the acceleration trajectory, and axial pre-magnetization, in which perturbations are smoothed out via magnetic field line tension. Here, we present two-dimensional magnetohydrodynamic simulations of loads driven by an 850 kA, 160 ns driver that suggest these mitigation strategies can be additive. The initial axial magnetic field, B_{z0}, to stabilize a 2.5-cm-radius Ne gas liner imploding onto an on-axis deuterium target can be reduced from 0.7 T to 0.3 T by adding a second liner with a radius of 1.25 cm. Because MRTI mitigation tends to increasingly lower yield with higher B_{z0}, the use of a lower field is advantageous. Here, we predict a reduction in yield penalty from >100× with the single liner to <10× with a double liner. A premagnetized, triple nozzle gas puff could therefore be an attractive source for intense neutrons or other fusion applications.

11.
Phys Rev E ; 103(6-1): 063208, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34271736

RESUMO

As an alternative inertial confinement fusion scheme, shock ignition requires a strong converging shock driven by a high-intensity laser pulse to ignite a precompressed fusion capsule. Understanding nonlinear laser-plasma instabilities is crucial to assess and improve the laser-shock energy coupling. Recent experiments conducted on the OMEGA EP laser facility have demonstrated that such instabilities can ∼100% deplete the first 0.5 ns of the high-intensity laser. Analyses of the observed laser-generated blast wave suggest that this pump-depletion starts at ∼0.02 critical density and progresses to 0.1-0.2 critical density, which is also confirmed by the time-resolved stimulated Raman backscattering spectra. The pump-depletion dynamics can be explained by the breaking of ion-acoustic waves in stimulated Brillouin scattering. Such pump depletion would inhibit the collisional laser energy absorption but may benefit the generation of hot electrons with moderate temperatures for electron shock ignition [Phys. Rev. Lett. 119, 195001 (2017)PRLTAO0031-900710.1103/PhysRevLett.119.195001].

12.
Rev Sci Instrum ; 92(6): 065110, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243593

RESUMO

Talbot-Lau x-ray interferometry has been implemented to map electron density gradients in High Energy Density Physics (HEDP) experiments. X-ray backlighter targets have been evaluated for Talbot-Lau X-ray Deflectometry (TXD). Cu foils, wires, and sphere targets have been irradiated by 10-150 J, 8-30 ps laser pulses, while two pulsed-power generators (∼350 kA, 350 ns and ∼200 kA, 150 ns) have driven Cu wire, hybrid, and laser-cut x-pinches. A plasma ablation front generated by the Omega EP laser was imaged for the first time through TXD for densities >1023 cm-3. Backlighter optimization in combination with x-ray CCD, image plates, and x-ray film has been assessed in terms of spatial resolution and interferometer contrast for accurate plasma characterization through TXD in pulsed-power and high-intensity laser environments. The results obtained thus far demonstrate the potential of TXD as a powerful diagnostic for HEDP.

13.
Phys Rev E ; 103(5-1): 053205, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34134252

RESUMO

An experimental study of the magnetic field distribution in gas-puff Z pinches with and without a preembedded axial magnetic field (B_{z0}) is presented. Spatially resolved, time-gated spectroscopic measurements were made at the Weizmann Institute of Science on a 300 kA, 1.6 µs rise time pulsed-power driver. The radial distribution of the azimuthal magnetic field, B_{θ}, during the implosion, with and without a preembedded axial magnetic field of B_{z0}=0.26T, was measured using Zeeman polarization spectroscopy. The spectroscopic measurements of B_{θ} were consistent with the corresponding values of B_{θ} inferred from current measurements made with a B-dot probe. One-dimensional magnetohydrodynamic simulations, performed with the code trac-ii, showed agreement with the experimentally measured implosion trajectory, and qualitatively reproduced the experimentally measured radial B_{θ} profiles during the implosion when B_{z0}=0.26T was applied. Simulation results of the radial profile of B_{θ} without a preembedded axial magnetic field did not qualitatively match experimental results due to magneto-Rayleigh-Taylor (MRT) instabilities. Our analysis emphasizes the importance of MRT instability mitigation when studying the magnetic field and current distributions in Z pinches. Discrepancies of the simulation results with experiment are discussed.

14.
Phys Rev E ; 103(3-1): 033203, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33862755

RESUMO

The generation of hot, directional electrons via laser-driven stimulated Raman scattering (SRS) is a topic of great importance in inertial confinement fusion (ICF) schemes. Little recent research has been dedicated to this process at high laser intensity, in which back, side, and forward scatter simultaneously occur in high energy density plasmas, of relevance to, for example, shock ignition ICF. We present an experimental and particle-in-cell (PIC) investigation of hot electron production from SRS in the forward and near-forward directions from a single speckle laser of wavelength λ_{0}=1.053µm, peak laser intensities in the range I_{0}=0.2-1.0×10^{17}Wcm^{-2} and target electron densities between n_{e}=0.3-1.6%n_{c}, where n_{c} is the plasma critical density. As the intensity and density are increased, the hot electron spectrum changes from a sharp cutoff to an extended spectrum with a slope temperature T=34±1keV and maximum measured energy of 350 keV experimentally. Multidimensional PIC simulations indicate that the high energy electrons are primarily generated from SRS-driven electron plasma wave phase fronts with k vectors angled ∼50^{∘} with respect to the laser axis. These results are consistent with analytical arguments that the spatial gain is maximized at an angle which balances the tendency for the growth rate to be larger for larger scattered light wave angles until the kinetic damping of the plasma wave becomes important. The efficiency of generated high energy electrons drops significantly with a reduction in either laser intensity or target electron density, which is a result of the rapid drop in growth rate of Raman scattering at angles in the forward direction.

15.
Sci Rep ; 11(1): 6881, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767262

RESUMO

We report on the development of a highly directional, narrow energy band, short time duration proton beam operating at high repetition rate. The protons are generated with an ultrashort-pulse laser interacting with a solid target and converted to a pencil-like narrow-band beam using a compact magnet-based energy selector. We experimentally demonstrate the production of a proton beam with an energy of 500 keV and energy spread well below 10[Formula: see text], and a pulse duration of 260 ps. The energy loss of this beam is measured in a 2 [Formula: see text]m thick solid Mylar target and found to be in good agreement with the theoretical predictions. The short time duration of the proton pulse makes it particularly well suited for applications involving the probing of highly transient plasma states produced in laser-matter interaction experiments. This proton source is particularly relevant for measurements of the proton stopping power in high energy density plasmas and warm dense matter.

16.
Philos Trans A Math Phys Eng Sci ; 379(2189): 20200052, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33280559

RESUMO

Inertial confinement fusion approaches involve the creation of high-energy-density states through compression. High gain scenarios may be enabled by the beneficial heating from fast electrons produced with an intense laser and by energy containment with a high-strength magnetic field. Here, we report experimental measurements from a configuration integrating a magnetized, imploded cylindrical plasma and intense laser-driven electrons as well as multi-stage simulations that show fast electrons transport pathways at different times during the implosion and quantify their energy deposition contribution. The experiment consisted of a CH foam cylinder, inside an external coaxial magnetic field of 5 T, that was imploded using 36 OMEGA laser beams. Two-dimensional (2D) hydrodynamic modelling predicts the CH density reaches [Formula: see text], the temperature reaches 920 eV and the external B-field is amplified at maximum compression to 580 T. At pre-determined times during the compression, the intense OMEGA EP laser irradiated one end of the cylinder to accelerate relativistic electrons into the dense imploded plasma providing additional heating. The relativistic electron beam generation was simulated using a 2D particle-in-cell (PIC) code. Finally, three-dimensional hybrid-PIC simulations calculated the electron propagation and energy deposition inside the target and revealed the roles the compressed and self-generated B-fields play in transport. During a time window before the maximum compression time, the self-generated B-field on the compression front confines the injected electrons inside the target, increasing the temperature through Joule heating. For a stronger B-field seed of 20 T, the electrons are predicted to be guided into the compressed target and provide additional collisional heating. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.

17.
Phys Rev E ; 102(2-1): 021201, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32942368

RESUMO

Structures on the front surface of thin foil targets for laser-driven ion acceleration have been proposed to increase the ion source maximum energy and conversion efficiency. While structures have been shown to significantly boost the proton acceleration from pulses of moderate-energy fluence, their performance on tightly focused and high-energy lasers remains unclear. Here, we report the results of laser-driven three-dimensional (3D)-printed microtube targets, focusing on their efficacy for ion acceleration. Using the high-contrast (∼10^{12}) PHELIX laser (150J, 10^{21}W/cm^{2}), we studied the acceleration of ions from 1-µm-thick foils covered with micropillars or microtubes, which we compared with flat foils. The front-surface structures significantly increased the conversion efficiency from laser to light ions, with up to a factor of 5 higher proton number with respect to a flat target, albeit without an increase of the cutoff energy. An optimum diameter was found for the microtube targets. Our findings are supported by a systematic particle-in-cell modeling investigation of ion acceleration using 2D simulations with various structure dimensions. Simulations reproduce the experimental data with good agreement, including the observation of the optimum tube diameter, and reveal that the laser is shuttered by the plasma filling the tubes, explaining why the ion cutoff energy was not increased in this regime.

18.
Sci Rep ; 10(1): 9415, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523004

RESUMO

Proton beams driven by chirped pulse amplified lasers have multi-picosecond duration and can isochorically and volumetrically heat material samples, potentially providing an approach for creating samples of warm dense matter with conditions not present on Earth. Envisioned on a larger scale, they could heat fusion fuel to achieve ignition. We have shown in an experiment that a kilojoule-class, multi-picosecond short pulse laser is particularly effective for heating materials. The proton beam can be focussed via target design to achieve exceptionally high flux, important for the applications mentioned. The laser irradiated spherically curved diamond-like-carbon targets with intensity 4 × 1018 W/cm2, producing proton beams with 3 MeV slope temperature. A Cu witness foil was positioned behind the curved target, and the gap between was either empty or spanned with a structure. With a structured target, the total emission of Cu Kα fluorescence was increased 18 fold and the emission profile was consistent with a tightly focussed beam. Transverse proton radiography probed the target with ps order temporal and 10 µm spatial resolution, revealing the fast-acting focussing electric field. Complementary particle-in-cell simulations show how the structures funnel protons to the tight focus. The beam of protons and neutralizing electrons induce the bright Kα emission observed and heat the Cu to 100 eV.

19.
Phys Rev E ; 101(3-1): 033206, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32289963

RESUMO

Two-dimensional particle-in-cell simulations for laser plasma interaction with laser intensity of 10^{16}W/cm^{2}, plasma density range of 0.01-0.28n_{c}, and scale length of 230-330µm showed significant pump depletion of the laser energy due to stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) in the low-density region (n_{e}=0.01-0.2n_{c}). The simulations identified hot electrons generated by SRS in the low-density region with moderate energy and by two-plasmon-decay near n_{e}=0.25n_{c} with higher energy. The overall hot electron temperature (46 keV) and conversion efficiency (3%) were consistent with the experiment's measurements. The simulations also showed artificially reducing SBS would lead to stronger SRS and a softer hot-electron spectrum.

20.
Phys Rev E ; 101(2-1): 023205, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32168644

RESUMO

Currently there is considerable interest in creating scalable laboratory plasmas to study the mechanisms behind the formation and evolution of astrophysical phenomena such as Herbig-Haro objects and supernova remnants. Laboratory-scaled experiments can provide a well diagnosed and repeatable supplement to direct observations of these extraterrestrial objects if they meet similarity criteria demonstrating that the same physics govern both systems. Here, we present a study on the role of collision and cooling rates on shock formation using colliding jets from opposed conical wire arrays on a compact pulsed-power driver. These diverse conditions were achieved by changing the wire material feeding the jets, since the ion-ion mean free path (λ_{mfp-ii}) and radiative cooling rates (P_{rad}) increase with atomic number. Low Z carbon flows produced smooth, temporally stable shocks. Weakly collisional, moderately cooled aluminum flows produced strong shocks that developed signs of thermal condensation instabilities and turbulence. Weakly collisional, strongly cooled copper flows collided to form thin shocks that developed inconsistently and fragmented. Effectively collisionless, strongly cooled tungsten flows interpenetrated, producing long axial density perturbations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...