Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202408316, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008428

RESUMO

Photosynthetic hydrogen generation by cobalt(II) tris(2-pyridilmethyl)amine (TPMA) complexes is mainly limited by protonation kinetics and decomposition routes involving demetallation. In the present work we have explored the effects of both proton shuttles and improved rigidity on the catalytic ability of cobalt(II) TPMA complexes. Remarkably, we demonstrate that, while a small enhancement in the catalytic performance is attained in a rigid cage structure, the introduction of ammonium groups as proton transfer relays in close proximity to the cobalt center allows to reach a 4-fold increase in the quantum efficiency of H2 formation, and a surprising 22-fold gain in the maximum turnover number, at low catalyst concentration. The beneficial role of the ammonium relays in promoting faster intramolecular proton transfer to the reduced cobalt center is documented by transient absorption spectroscopy, showcasing the great relevance of tuning the catalyst periphery to achieve efficient catalysis of solar fuel formation.

2.
Angew Chem Int Ed Engl ; 62(51): e202311153, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37665795

RESUMO

Spatial organization using confinement has been of great interest since the early ages of supramolecular chemistry. Application such as sensing, catalysis and delivery are continuously emerging. This minireview highlights the evolution of chiral supramolecular cages (CSC) applications in the fields of catalysis, sensing and chiroptical properties. More in detail, beside the description of the strategies adopted for the preparation of chiral supramolecular cages, either of purely organic supramolecular architectures or prepared using metal-ligand coordination bonds, recent findings on their applications, with particular attention to stereodynamic systems, are presented to highlight the recent scientific interests and the future opportunities.

3.
Chem Sci ; 14(30): 8147-8151, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37538831

RESUMO

Taking inspiration from Nature, where (bio)molecular geometry variations are exploited to tune a large variety of functions, supramolecular chemistry has continuously developed novel systems in which, as a consequence of a specific stimulus, structural changes occur. Among the different architectures, supramolecular cages have been continuously investigated for their capability to act as functional hosts where guests can be released in a controlled fashion. In this paper, a novel methodology based on the use of phenanthrenequinone is applied to selectively change the binding properties of a tris(2-pyridylmethyl)amine TPMA-based cage. In particular, subcomponent substitution has been used to change structural cage features thus controlling the inclusion ratio of competing guests differing in size or chirality.

4.
Angew Chem Int Ed Engl ; 62(30): e202304490, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37159530

RESUMO

Dynamic covalent chemistry (DCC) has, in recent years, provided valuable tools to synthesize molecular architectures of increasing complexity. We have also taken advantage of imine DCC chemistry to prepare TPMA-based supramolecular cages for molecular recognition applications. However, the versatility of this approach has as a major drawback the intrinsic hydrolytic lability of imines, which hampers some applications. We present herein a synthetic strategy that combines the advantages of a thermodynamic-driven formation of a supramolecular structure using imine chemistry, together with the possibility to synthetize chiral hydrolytically stable structures through a [3,3]-sigmatropic rearrangement. A preliminary mechanistic analysis of this one-pot synthesis and the scope of the reaction are also discussed.

5.
Chem Commun (Camb) ; 59(44): 6714-6717, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37191071

RESUMO

The use of chiroptical techniques in combination with stereodynamic probes is becoming one of the leading strategies for chiral sensing. While in most of the reported studies circular dichroism (CD) is the adopted spectroscopic technique, examples regarding the use of vibrational CD (VCD), circularly polarized luminescence (CPL), and Raman optical activity (ROA) are emerging as innovative tools. In this communication, an anthracene-decorated tris(2-pyridylmethyl)amine zinc complex (TPMA) is reported for its capability to act as a chiral sensor using either CD or fluorescence detected circular dichroism (FDCD). The latter technique offers the unique possibility to determine the enantiomeric excess of a series of carboxylic acids at sensor concentrations down to 0.1 µM. Limitations and possibilities opened by the use of this methodology, in particular regarding the specificity of the probe in the presence of another contaminant, are discussed.

6.
ACS Sens ; 7(5): 1390-1394, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35472260

RESUMO

The fundamental implications that chirality has in science and technology require continuous efforts for the development of fast, economic, and reliable quantitative methods for enantiopurity assessment. Among the different analytical approaches, chiroptical techniques in combination with supramolecular methodologies have shown promising results in terms of both costs and time analysis. In this article, a tris(2-pyridylmethyl)amines (TPMA)-based supramolecular cage is able to amplify the circular dichroism (CD) signal of a series of chiral dicarboxylic acids also in the presence of a complex mixture. This feature has been used to quantify tartaric acid in wines and to discriminate different matrixes using principal component analysis (PCA) of the raw CD data.


Assuntos
Aminas , Ácidos Dicarboxílicos , Dicroísmo Circular , Estereoisomerismo
7.
Chem Commun (Camb) ; 57(78): 10019-10022, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34505582

RESUMO

Two imine based supramolecular cages are able to self-assemble in the presence of a complex mixture like wine or fruit juices. Taking advantage of templating agents present in these mixtures the systems are able to form and to selectively encapsulate dicarboxylic systems present in the mixtures. This capability has been exploited to develop molecular systems able to report the enantiomeric excess and composition of (a)chiral dicarboxylic acids in fruit juices and wines using 1H-NMR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...