Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cell Calcium ; 120: 102882, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631162

RESUMO

Strict homeostatic control of pH in both intra- and extracellular compartments of the brain is fundamentally important, primarily due to the profound impact of free protons ([H+]) on neuronal activity and overall brain function. Astrocytes, crucial players in the homeostasis of various ions in the brain, actively regulate their intracellular [H+] (pHi) through multiple membrane transporters and carbonic anhydrases. The activation of astroglial pHi regulating mechanisms also leads to corresponding alterations in the acid-base status of the extracellular fluid. Notably, astrocyte pH regulators are modulated by various neuronal signals, suggesting their pivotal role in regulating brain acid-base balance in both health and disease. This review presents the mechanisms involved in pH regulation in astrocytes and discusses their potential impact on extracellular pH under physiological conditions and in brain disorders. Targeting astrocytic pH regulatory mechanisms represents a promising therapeutic approach for modulating brain acid-base balance in diseases, offering a potential critical contribution to neuroprotection.


Assuntos
Astrócitos , Encéfalo , Astrócitos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Animais , Encéfalo/metabolismo , Encefalopatias/metabolismo , Encefalopatias/patologia , Homeostase
2.
Aging Dis ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38300642

RESUMO

The blood-brain barrier (BBB) plays a critical role in maintaining ion and fluid homeostasis, essential for brain metabolism and neuronal function. Regulation of nutrient, water, and ion transport across the BBB is tightly controlled by specialized ion transporters and channels located within its unique cellular components. These dynamic transport processes not only influence the BBB's structure but also impact vital signaling mechanisms, essential for its optimal function. Disruption in ion, pH, and fluid balance at the BBB is associated with brain pathology and has been implicated in various neurological conditions, including stroke, epilepsy, trauma, and neurodegenerative diseases such as Alzheimer's disease (AD). However, knowledge gaps exist regarding the impact of ion transport dysregulation on BBB function in neurodegenerative dementias. Several factors contribute to this gap: the complex nature of these conditions, historical research focus on neuronal mechanisms and technical challenges in studying the ion transport mechanisms in in vivo models and the lack of efficient in vitro BBB dementia models. This review provides an overview of current research on the roles of ion transporters and channels at the BBB and poses specific research questions: 1) How are the expression and activity of key ion transporters altered in AD and vascular dementia (VaD); 2) Do these changes contribute to BBB dysfunction and disease progression; and 3) Can restoring ion transport function mitigate BBB dysfunction and improve clinical outcomes. Addressing these gaps will provide a greater insight into the vascular pathology of neurodegenerative disorders.

3.
Front Cell Neurosci ; 17: 1279385, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107410

RESUMO

Neuroinflammation is a pathological event associated with many neurological disorders, including dementia and stroke. The choroid plexus (ChP) is a key structure in the ventricles of the brain that secretes cerebrospinal fluid (CSF), forms a blood-CSF barrier, and responds to disease conditions by recruiting immune cells and maintaining an immune microenvironment in the brain. Despite these critical roles, the exact structural and functional changes to the ChP over post-stroke time remain to be elucidated. We induced ischemic stroke in C57BL/6J mice via transient middle cerebral artery occlusion which led to reduction of cerebral blood flow and infarct stroke. At 1-7 days post-stroke, we detected time-dependent increase in the ChP blood-CSF barrier permeability to albumin, tight-junction damage, and dynamic changes of SPAK-NKCC1 protein complex, a key ion transport regulatory system for CSF production and clearance. A transient loss of SPAK protein complex but increased phosphorylation of the SPAK-NKCC1 complex was observed in both lateral ventricle ChPs. Most interestingly, stroke also triggered elevation of proinflammatory Lcn2 mRNA and its protein as well as infiltration of anti-inflammatory myeloid cells in ChP at day 5 post-stroke. These findings demonstrate that ischemic strokes cause significant damage to the ChP blood-CSF barrier, contributing to neuroinflammation in the subacute stage.

4.
Cell Death Dis ; 13(4): 371, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440572

RESUMO

Reactive astrocytes (RA) secrete lipocalin-2 (LCN2) glycoprotein that regulates diverse cellular processes including cell death/survival, inflammation, iron delivery and cell differentiation. Elevated levels of LCN2 are considered as a biomarker of brain injury, however, the underlying regulatory mechanisms of its expression and release are not well understood. In this study, we investigated the role of astrocytic Na+/H+ exchanger 1 (NHE1) in regulating reactive astrocyte LCN2 secretion and neurodegeneration after stroke. Astrocyte specific deletion of Nhe1 in Gfap-CreER+/-;Nhe1f/f mice reduced astrogliosis and astrocytic LCN2 and GFAP expression, which was associated with reduced loss of NeuN+ and GRP78+ neurons in stroke brains. In vitro ischemia in astrocyte cultures triggered a significant increase of secreted LCN2 in astrocytic exosomes, which caused neuronal cell death and neurodegeneration. Inhibition of NHE1 activity during in vitro ischemia with its potent inhibitor HOE642 significantly reduced astrocytic LCN2+ exosome secretion. In elucidating the cellular mechanisms, we found that stroke triggered activation of NADPH oxidase (NOX)-NF-κB signaling and ROS-mediated LCN2 expression. Inhibition of astrocytic NHE1 activity attenuated NOX signaling and LCN2-mediated neuronal apoptosis and neurite degeneration. Our findings demonstrate for the first time that RA use NOX signaling to stimulate LCN2 expression and secretion. Blocking astrocytic NHE1 activity is beneficial to reduce LCN2-mediated neurotoxicity after stroke.


Assuntos
Astrócitos , Lipocalina-2 , Acidente Vascular Cerebral , Animais , Astrócitos/metabolismo , Isquemia/metabolismo , Lipocalina-2/genética , Lipocalina-2/metabolismo , Camundongos , NADPH Oxidases/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Acidente Vascular Cerebral/metabolismo
5.
J Neuroinflammation ; 19(1): 91, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35413993

RESUMO

BACKGROUND: The mechanisms underlying dysfunction of choroid plexus (ChP) blood-cerebrospinal fluid (CSF) barrier and lymphocyte invasion in neuroinflammatory responses to stroke are not well understood. In this study, we investigated whether stroke damaged the blood-CSF barrier integrity due to dysregulation of major ChP ion transport system, Na+-K+-Cl- cotransporter 1 (NKCC1), and regulatory Ste20-related proline-alanine-rich kinase (SPAK). METHODS: Sham or ischemic stroke was induced in C57Bl/6J mice. Changes on the SPAK-NKCC1 complex and tight junction proteins (TJs) in the ChP were quantified by immunofluorescence staining and immunoblotting. Immune cell infiltration in the ChP was assessed by flow cytometry and immunostaining. Cultured ChP epithelium cells (CPECs) and cortical neurons were used to evaluate H2O2-mediated oxidative stress in stimulating the SPAK-NKCC1 complex and cellular damage. In vivo or in vitro pharmacological blockade of the ChP SPAK-NKCC1 cascade with SPAK inhibitor ZT-1a or NKCC1 inhibitor bumetanide were examined. RESULTS: Ischemic stroke stimulated activation of the CPECs apical membrane SPAK-NKCC1 complex, NF-κB, and MMP9, which was associated with loss of the blood-CSF barrier integrity and increased immune cell infiltration into the ChP. Oxidative stress directly activated the SPAK-NKCC1 pathway and resulted in apoptosis, neurodegeneration, and NKCC1-mediated ion influx. Pharmacological blockade of the SPAK-NKCC1 pathway protected the ChP barrier integrity, attenuated ChP immune cell infiltration or neuronal death. CONCLUSION: Stroke-induced pathological stimulation of the SPAK-NKCC1 cascade caused CPECs damage and disruption of TJs at the blood-CSF barrier. The ChP SPAK-NKCC1 complex emerged as a therapeutic target for attenuating ChP dysfunction and lymphocyte invasion after stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Animais , Plexo Corióideo/metabolismo , Peróxido de Hidrogênio , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases , Membro 2 da Família 12 de Carreador de Soluto/metabolismo
6.
J Neuroinflammation ; 18(1): 187, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454529

RESUMO

BACKGROUND: Chronic cerebral hypoperfusion (CCH) causes white matter damage and cognitive impairment, in which astrogliosis is the major pathology. However, underlying cellular mechanisms are not well defined. Activation of Na+/H+ exchanger-1 (NHE1) in reactive astrocytes causes astrocytic hypertrophy and swelling. In this study, we examined the role of NHE1 protein in astrogliosis, white matter demyelination, and cognitive function in a murine CCH model with bilateral carotid artery stenosis (BCAS). METHODS: Sham, BCAS, or BCAS mice receiving vehicle or a selective NHE1 inhibitor HOE642 were monitored for changes of the regional cerebral blood flow and behavioral performance for 28 days. Ex vivo MRI-DTI was subsequently conducted to detect brain injury and demyelination. Astrogliosis and demyelination were further examined by immunofluorescence staining. Astrocytic transcriptional profiles were analyzed with bulk RNA-sequencing and RT-qPCR. RESULTS: Chronic cerebral blood flow reduction and spatial working memory deficits were detected in the BCAS mice, along with significantly reduced mean fractional anisotropy (FA) values in the corpus callosum, external capsule, and hippocampus in MRI DTI analysis. Compared with the sham control mice, the BCAS mice displayed demyelination and axonal damage and increased GFAP+ astrocytes and Iba1+ microglia. Pharmacological inhibition of NHE1 protein with its inhibitor HOE642 prevented the BCAS-induced gliosis, damage of white matter tracts and hippocampus, and significantly improved cognitive performance. Transcriptome and immunostaining analysis further revealed that NHE1 inhibition specifically attenuated pro-inflammatory pathways and NADPH oxidase activation. CONCLUSION: Our study demonstrates that NHE1 protein is involved in astrogliosis with pro-inflammatory transformation induced by CCH, and its blockade has potentials for reducing astrogliosis, demyelination, and cognitive impairment.


Assuntos
Astrócitos/efeitos dos fármacos , Estenose das Carótidas/tratamento farmacológico , Cognição/efeitos dos fármacos , Gliose/tratamento farmacológico , Guanidinas/uso terapêutico , Sulfonas/uso terapêutico , Substância Branca/efeitos dos fármacos , Animais , Astrócitos/patologia , Estenose das Carótidas/patologia , Circulação Cerebrovascular/efeitos dos fármacos , Disfunção Cognitiva/patologia , Gliose/patologia , Guanidinas/farmacologia , Inflamação/patologia , Camundongos , Microglia/efeitos dos fármacos , Microglia/patologia , Trocador 1 de Sódio-Hidrogênio/antagonistas & inibidores , Sulfonas/farmacologia , Substância Branca/patologia
7.
Prog Neurobiol ; 199: 101963, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33249091

RESUMO

The role of astrocytes in dysregulation of blood-brain barrier (BBB) function following ischemic stroke is not well understood. Here, we investigate the effects of restoring the repair properties of astrocytes on the BBB after ischemic stroke. Mice deficient for NHE1, a pH-sensitive Na+/H+ exchanger 1, in astrocytes have reduced BBB permeability after ischemic stroke, increased angiogenesis and cerebral blood flow perfusion, in contrast to wild-type mice. Bulk RNA-sequencing transcriptome analysis of purified astrocytes revealed that ∼177 genes were differentially upregulated in mutant astrocytes, with Wnt7a mRNA among the top genes. Using a Wnt reporter line, we confirmed that the pathway was upregulated in cerebral vessels of mutant mice after ischemic stroke. However, administration of the Wnt/ß-catenin inhibitor, XAV-939, blocked the reparative effects of Nhe1-deficient astrocytes. Thus, astrocytes lacking pH-sensitive NHE1 protein are transformed from injurious to "protective" by inducing Wnt production to promote BBB repair after ischemic stroke.


Assuntos
Barreira Hematoencefálica , Isquemia Encefálica , AVC Isquêmico , Animais , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Camundongos , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
8.
Mol Cancer Ther ; 19(7): 1550-1561, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32393472

RESUMO

Glioma is one of the most common primary malignant tumors of the central nervous system accounting for approximately 40% of all intracranial tumors. Temozolomide is a conventional chemotherapy drug for adjuvant treatment of patients with high-risk gliomas, including grade II to grade IV. Our bioinformatic analysis of The Cancer Genome Atlas and Chinese Glioma Genome Atlas datasets and immunoblotting assay show that SLC12A2 gene and its encoded Na+-K+-2Cl- cotransporter isoform 1 (NKCC1) protein are abundantly expressed in grade II-IV gliomas. NKCC1 regulates cell volume and intracellular Cl- concentration, which promotes glioma cell migration, resistance to temozolomide, and tumor-related epilepsy in experimental glioma models. Using mouse syngeneic glioma models with intracranial transplantation of two different glioma cell lines (GL26 and SB28), we show that NKCC1 protein in glioma tumor cells as well as in tumor-associated reactive astrocytes was significantly upregulated in response to temozolomide monotherapy. Combination therapy of temozolomide with the potent NKCC1 inhibitor bumetanide reduced tumor proliferation, potentiated the cytotoxic effects of temozolomide, decreased tumor-associated reactive astrogliosis, and restored astrocytic GLT-1 and GLAST glutamate transporter expression. The combinatorial therapy also led to suppressed tumor growth and prolonged survival of mice bearing GL26 glioma cells. Taken together, these results demonstrate that NKCC1 protein plays multifaceted roles in the pathogenesis of glioma tumors and presents as a therapeutic target for reducing temozolomide-mediated resistance and tumor-associated astrogliosis.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/patologia , Gliose/prevenção & controle , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Temozolomida/farmacologia , Animais , Antineoplásicos Alquilantes , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Tamanho Celular , Feminino , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Gliose/genética , Gliose/metabolismo , Gliose/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Prognóstico , Membro 2 da Família 12 de Carreador de Soluto/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Exp Clin Cancer Res ; 37(1): 255, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30333031

RESUMO

BACKGROUND: Sodium/hydrogen exchanger 1 (NHE1), encoded by the SLC9A1 gene (SoLute Carrier family 9A1) in humans, is the main H+ efflux mechanism in maintaining alkaline intracellular pH (pHi) and Warburg effects in glioma. However, to date, there are no clinical studies exploring pharmacological inhibition of NHE1 protein in cancer treatment. In this study, we investigated NHE1 expression in gliomas and its relationship with glioma clinical outcome. METHODS: The Chinese Glioma Genome Atlas (CGGA) dataset containing transcriptome sequencing data of 325 glioma samples and the Cancer Genome Atlas (TCGA) with 698 glioma mRNAseq data were analyzed in this study. Mouse SB28 and GL26 intracranial syngeneic glioma models in C57BL/6 J mice were established to investigate NHE1 expression and impact of NHE1 protein inhibition with its inhibitor HOE642 on tumorigenesis and anti-PD1 therapy. Tumor angiogenesis, immunogenicity, and progression were assessed by immunofluorescence staining and flow cytometric profiling. RESULTS: Analysis of SLC9A1 mRNA expression in two data sets, CGGA and TCGA, reveals significantly higher SLC9A1 mRNA levels in higher grade gliomas. The SLC9A1 mRNA expression was especially enriched in isocitrate dehydrogenase (IDH)1/2 wild-type glioblastoma (GBM) and in mesenchymal glioma subtypes. Worsened survival probabilities were correlated with the elevated SLC9A1 mRNA levels in gliomas. The underlying mechanisms include promoting angiogenesis, and extracellular matrix remodeling. Increased SLC9A1 mRNA expression was also associated with tumor-associated macrophage accumulation. NHE1 inhibitor HOE642 reduced glioma volume, invasion, and prolonged overall survival in mouse glioma models. Blockade of NHE1 protein also stimulated immunogenic tumor microenvironment via activating CD8 T-cell accumulation, increasing expression of interferon-gamma (Ifng), and sensitized animals to anti-PD-1 therapy. CONCLUSION: Our findings strongly suggest that NHE1 protein emerges as a marker for tumorigenesis and prognosis in glioma. Blocking NHE1 protein is a novel strategy for adjuvant anti-cancer therapies.


Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Trocador 1 de Sódio-Hidrogênio/genética , Regulação para Cima , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Guanidinas/administração & dosagem , Guanidinas/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gradação de Tumores , Transplante de Neoplasias , Prognóstico , Análise de Sequência de RNA , Trocador 1 de Sódio-Hidrogênio/metabolismo , Sulfonas/administração & dosagem , Sulfonas/farmacologia , Análise de Sobrevida
10.
Cell Death Dis ; 9(10): 1010, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30262908

RESUMO

The weak immunogenicity of gliomas presents a barrier for effective immunotherapy. Na/H exchanger isoform 1 (NHE1) maintains alkaline intracellular pH (pHi) of glioma cells and acidic microenvironment. In addition, NHE1 is expressed in tumor-associated microglia and tumor-associated macrophages (TAMs) and involved in protumoral communications between glioma and TAMs. Therefore, we hypothesize that NHE1 plays a role in developing tumor resistance and immunosuppressive tumor microenvironment. In this study, we investigated the efficacy of pharmacological inhibition of NHE1 on combinatorial therapies. Here we show that temozolomide (TMZ) treatment stimulates NHE1 protein expression in two intracranial syngeneic mouse glioma models (SB28, GL26). Pharmacological inhibition of NHE1 potentiated the cytotoxic effects of TMZ, leading to reduced tumor growth and increased median survival of mice. Blockade of NHE1 stimulated proinflammatory activation of TAM and increased cytotoxic T cell infiltration into tumors. Combining TMZ, anti-PD-1 antibody treatment with NHE1 blockade significantly prolonged the median survival in the mouse glioma model. These results demonstrate that pharmacological inhibition of NHE1 protein presents a new strategy for potentiating TMZ-induced cytotoxicity and increasing tumor immunogenicity for immunotherapy to improve glioma therapy.


Assuntos
Glioma/tratamento farmacológico , Glioma/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Trocador 1 de Sódio-Hidrogênio/metabolismo , Temozolomida/farmacologia , Animais , Anticorpos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Imunoterapia/métodos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/metabolismo , Microambiente Tumoral/efeitos dos fármacos
11.
Glia ; 66(11): 2279-2298, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30043461

RESUMO

Na+ /H+ exchanger (NHE1) activation is required for multiple microglial functions. We investigated effects of selective deletion of microglial Nhe1 in Cx3cr1-CreER ;Nhe1f/f mice on neuroinflammation and tissue repair after ischemic stroke. Infarct volume was similar in corn oil or tamoxifen (Tam)-treated mice at 48 hr and 14 days post-stroke. However, the Tam-treated mice showed significantly higher survival rate and faster neurological function recovery during day 1-14 post-stroke. Deletion of microglial Nhe1 prevented the elevation of CD11b+ /CD45low-med microglia in the ischemic hemisphere at day 3 post-stroke, but stimulated expression of Ym1, CD68, TGF-ß, IL-10, decreased expression of CD86 and IL-1ß, and reduced GFAP+ reactive astrocytes. Moreover, at day 14 post-stroke, enhanced white matter myelination was detected in the microglial Nhe1 deleted mice. In comparison, neuronal Nhe1-null mice (the CamKII-Cre+/- ;Nhe1f/f mice) showed a significant reduction in both acute and subacute infarct volume, along with increased survival rate and moderate neurological function recovery. However, these neuronal Nhe1-null mice did not exhibit reduced activation of CD11b+ /CD45low-med microglia or CD11b+ /CD45hi macrophages in the ischemic brains, and they exhibited no reductions in white matter lesions. Taken together, this study demonstrated that deletion of microglial and neuronal Nhe1 had differential effects on ischemic brain damage. Microglial NHE1 is involved in pro-inflammatory responses during post-stroke brain tissue repair. In contrast, neuronal NHE1 activation is directly associated with the acute ischemic neuronal injury but not inflammation. Our study reveals that NHE1 protein is a potential therapeutic target critical for differential regulation of ischemic neuronal injury, demyelination and tissue repair.


Assuntos
Receptor 1 de Quimiocina CX3C/metabolismo , Doenças Desmielinizantes/etiologia , Infarto da Artéria Cerebral Média/complicações , Microglia/metabolismo , Recuperação de Função Fisiológica/fisiologia , Trocador 1 de Sódio-Hidrogênio/metabolismo , Substância Branca/patologia , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Receptor 1 de Quimiocina CX3C/genética , Proteínas de Ligação ao Cálcio/metabolismo , Doenças Desmielinizantes/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Infarto da Artéria Cerebral Média/tratamento farmacológico , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Trocador 1 de Sódio-Hidrogênio/genética , Distúrbios Somatossensoriais/etiologia , Tamoxifeno/farmacologia , Substância Branca/diagnóstico por imagem
12.
Glia ; 66(1): 126-144, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28925083

RESUMO

Stimulation of Na+ /H+ exchanger isoform 1 (NHE1) in astrocytes causes ionic dysregulation under ischemic conditions. In this study, we created a Nhe1flox/flox (Nhe1f/f ) mouse line with exon 5 of Nhe1 flanked with two loxP sites and selective ablation of Nhe1 in astrocytes was achieved by crossing Nhe1f/f mice with Gfap-CreERT2 Cre-recombinase mice. Gfap-CreERT2+/- ;Nhe1f/f mice at postnatal day 60-90 were treated with either corn oil or tamoxifen (Tam, 75 mg/kg/day, i.p.) for 5 days. After 30 days post-injection, mice underwent transient middle cerebral artery occlusion (tMCAO) to induce ischemic stroke. Compared with the oil-vehicle group (control), Tam-treated Gfap-CreERT2+/- ;Nhe1f/f (Nhe1 KO) mice developed significantly smaller ischemic infarction, less edema, and less neurological function deficits at 1-5 days after tMCAO. Immunocytochemical analysis revealed less astrocytic proliferation, less cellular hypertrophy, and less peri-lesion gliosis in Nhe1 KO mouse brains. Selective deletion of Nhe1 in astrocytes also reduced cerebral microvessel damage and blood-brain barrier (BBB) injury in ischemic brains. The BBB microvessels of the control brains show swollen endothelial cells, opened tight junctions, increased expression of proinflammatory protease MMP-9, and significant loss of tight junction protein occludin. In contrast, the Nhe1 KO mice exhibited reduced BBB breakdown and normal tight junction structure, with increased expression of occludin and reduced MMP-9. Most importantly, deletion of astrocytic Nhe1 gene significantly increased regional cerebral blood flow in the ischemic hemisphere at 24 hr post-MCAO. Taken together, our study provides the first line of evidence for a causative role of astrocytic NHE1 protein in reactive astrogliosis and ischemic neurovascular damage.


Assuntos
Astrócitos/metabolismo , Barreira Hematoencefálica/patologia , Gliose/patologia , Infarto da Artéria Cerebral Média/complicações , Trocador 1 de Sódio-Hidrogênio/deficiência , Animais , Astrócitos/ultraestrutura , Barreira Hematoencefálica/ultraestrutura , Infarto Encefálico/diagnóstico , Infarto Encefálico/etiologia , Infarto Encefálico/genética , Circulação Cerebrovascular/genética , Circulação Cerebrovascular/fisiologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/etiologia , Gliose/genética , Gliose/metabolismo , Infarto da Artéria Cerebral Média/patologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Atividade Motora/genética , Exame Neurológico , Reperfusão , Trocador 1 de Sódio-Hidrogênio/genética
13.
J Cereb Blood Flow Metab ; 37(2): 550-563, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26861815

RESUMO

The WNK-SPAK kinase signaling pathway controls renal NaCl reabsorption and systemic blood pressure by regulating ion transporters and channels. A WNK3-SPAK complex is highly expressed in brain, but its function in this organ remains unclear. Here, we investigated the role of this kinase complex in brain edema and white matter injury after ischemic stroke. Wild-type, WNK3 knockout, and SPAK heterozygous or knockout mice underwent transient middle cerebral artery occlusion. One cohort of mice underwent magnetic resonance imaging. Ex-vivo brains three days post-ischemia were imaged by slice-selective spin-echo diffusion tensor imaging magnetic resonance imaging, after which the same brain tissues were subjected to immunofluorescence staining. A second cohort of mice underwent neurological deficit analysis up to 14 days post-transient middle cerebral artery occlusion. Relative to wild-type mice, WNK3 knockout, SPAK heterozygous, and SPAK knockout mice each exhibited a >50% reduction in infarct size and associated cerebral edema, significantly less demyelination, and improved neurological outcomes. We conclude that WNK3-SPAK signaling regulates brain swelling, gray matter injury, and demyelination after ischemic stroke, and that WNK3-SPAK inhibition has therapeutic potential for treating malignant cerebral edema in the setting of middle cerebral artery stroke.


Assuntos
Edema Encefálico/genética , Encéfalo/patologia , Deleção de Genes , Infarto da Artéria Cerebral Média/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Encéfalo/metabolismo , Edema Encefálico/etiologia , Edema Encefálico/patologia , Feminino , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Substância Branca/metabolismo , Substância Branca/patologia
14.
J Cereb Blood Flow Metab ; 37(8): 2780-2794, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27798271

RESUMO

With-no-lysine kinase (WNK) and Na+-K+-2Cl- cotransporter 1 (NKCC1) are involved in the pathogenesis of hypertension. In this study, we investigated the WNK-NKCC1 signaling pathway in spontaneously hypertensive rats (SHR) and their associated susceptibility to stroke injury. Basal NKCC1 protein levels were higher in SHR than in normotensive Wistar Kyoto (WKY) rat brains. After inducing ischemic stroke, adult male WKY and SHR received either saline or NKCC1 inhibitor bumetanide (10 mg/kg/day, i.p.) starting at 3-h post-reperfusion. NKCC1 inhibition blunted the extent of ischemic infarction in SHR and improved their neurobehavioral functions. Interestingly, ischemia led to increased NKCC1 phosphorylation in SHR but not in WKY rats. Pronounced elevation of WNK1, WNK2 and WNK4 protein and downregulation of WNK3 were detected in ischemic SHR, but not in ischemic WKY rats. Upregulation of WNK-NKCC1 complex in ischemic SHR brain was associated with increased Ca2+-binding protein 39 (Cab39), without increases in Ste20-related proline alanine-rich kinase or oxidative stress-responsive kinase-1. Moreover, subacute middle cerebral artery stroke human brain autopsy exhibited increased expression of NKCC1 protein. We conclude that augmented WNK-Cab39-NKCC1 signaling in SHR is associated with an increased susceptibility to ischemic brain damage and may serve as a novel target for anti-hypertensive and anti-ischemic stroke therapy.


Assuntos
Isquemia Encefálica/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Hipertensão/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Animais , Isquemia Encefálica/etiologia , Proteínas de Ligação ao Cálcio/genética , Modelos Animais de Doenças , Hipertensão/complicações , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Transdução de Sinais , Membro 2 da Família 12 de Carreador de Soluto/genética , Regulação para Cima
15.
Sci Rep ; 6: 35986, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27782176

RESUMO

Cell volume homeostasis requires the dynamically regulated transport of ions across the plasmalemma. While the ensemble of ion transport proteins involved in cell volume regulation is well established, the molecular coordinators of their activities remain poorly characterized. We utilized a functional kinomics approach including a kinome-wide siRNA-phosphoproteomic screen, a high-content kinase inhibitor screen, and a kinase trapping-Orbitrap mass spectroscopy screen to systematically identify essential kinase regulators of KCC3 Thr991/Thr1048 phosphorylation - a key signaling event in cell swelling-induced regulatory volume decrease (RVD). In the mammalian brain, we found the Cl--sensitive WNK3-SPAK kinase complex, required for cell shrinkage-induced regulatory volume decrease (RVI) via the stimulatory phosphorylation of NKCC1 (Thr203/Thr207/Thr212), is also essential for the inhibitory phosphorylation of KCC3 (Thr991/Thr1048). This is mediated in vivo by an interaction between the CCT domain in SPAK and RFXV/I domains in WNK3 and NKCC1/KCC3. Accordingly, genetic or pharmacologic WNK3-SPAK inhibition prevents cell swelling in response to osmotic stress and ameliorates post-ischemic brain swelling through a simultaneous inhibition of NKCC1-mediated Cl- uptake and stimulation of KCC3-mediated Cl- extrusion. We conclude that WNK3-SPAK is an integral component of the long-sought "Cl-/volume-sensitive kinase" of the cation-Cl- cotransporters, and functions as a molecular rheostat of cell volume in the mammalian brain.


Assuntos
Encéfalo/metabolismo , Cloretos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Simportadores/metabolismo , Animais , Barreira Hematoencefálica , Tamanho Celular , Células HEK293 , Humanos , Transporte de Íons , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Pressão Osmótica , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteômica , Interferência de RNA , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Simportadores/antagonistas & inibidores , Simportadores/deficiência , Simportadores/genética
16.
Glia ; 64(10): 1677-97, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27458821

RESUMO

Sodium dynamics are essential for regulating functional processes in glial cells. Indeed, glial Na(+) signaling influences and regulates important glial activities, and plays a role in neuron-glia interaction under physiological conditions or in response to injury of the central nervous system (CNS). Emerging studies indicate that Na(+) pumps and Na(+) -dependent ion transporters in astrocytes, microglia, and oligodendrocytes regulate Na(+) homeostasis and play a fundamental role in modulating glial activities in neurological diseases. In this review, we first briefly introduced the emerging roles of each glial cell type in the pathophysiology of cerebral ischemia, Alzheimer's disease, epilepsy, Parkinson's disease, Amyotrophic Lateral Sclerosis, and myelin diseases. Then, we discussed the current knowledge on the main roles played by the different glial Na(+) -dependent ion transporters, including Na(+) /K(+) ATPase, Na(+) /Ca(2+) exchangers, Na(+) /H(+) exchangers, Na(+) -K(+) -Cl(-) cotransporters, and Na(+) - HCO3- cotransporter in the pathophysiology of the diverse CNS diseases. We highlighted their contributions in cell survival, synaptic pathology, gliotransmission, pH homeostasis, and their role in glial activation, migration, gliosis, inflammation, and tissue repair processes. Therefore, this review summarizes the foundation work for targeting Na(+) -dependent ion transporters in glia as a novel strategy to control important glial activities associated with Na(+) dynamics in different neurological disorders. GLIA 2016;64:1677-1697.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Doenças do Sistema Nervoso/patologia , Neuroglia/fisiologia , Sódio/metabolismo , Animais , Humanos , Transporte de Íons/fisiologia , Transdução de Sinais/fisiologia
17.
ASN Neuro ; 7(6)2015.
Artigo em Inglês | MEDLINE | ID: mdl-26685193

RESUMO

We investigated the effects of the administration of docosahexaenoic acid (DHA) post-traumatic brain injury (TBI) on reducing neuroinflammation. TBI was induced by cortical contusion injury in Sprague Dawley rats. Either DHA (16 mg/kg in dimethyl sulfoxide) or vehicle dimethyl sulfoxide (1 ml/kg) was administered intraperitonially at 5 min after TBI, followed by a daily dose for 3 to 21 days. TBI triggered activation of microglia or macrophages, detected by an increase of Iba1 positively stained microglia or macrophages in peri-lesion cortical tissues at 3, 7, and 21 days post-TBI. The inflammatory response was further characterized by expression of the proinflammatory marker CD16/32 and the anti-inflammatory marker CD206 in Iba1(+) microglia or macrophages. DHA-treated brains showed significantly fewer CD16/32(+) microglia or macrophages, but an increased CD206(+) phagocytic microglial or macrophage population. Additionally, DHA treatment revealed a shift in microglial or macrophage morphology from the activated, amoeboid-like state into the more permissive, surveillant state. Furthermore, activated Iba1(+) microglial or macrophages were associated with neurons expressing the endoplasmic reticulum (ER) stress marker CHOP at 3 days post-TBI, and the administration of DHA post-TBI concurrently reduced ER stress and the associated activation of Iba1(+) microglial or macrophages. There was a decrease in nuclear translocation of activated nuclear factor kappa-light-chain-enhancer of activated B cells protein at 3 days in DHA-treated tissue and reduced neuronal degeneration in DHA-treated brains at 3, 7, and 21 days after TBI. In summary, our study demonstrated that TBI mediated inflammatory responses are associated with increased neuronal ER stress and subsequent activation of microglia or macrophages. DHA administration reduced neuronal ER stress and subsequent association with microglial or macrophage polarization after TBI, demonstrating its therapeutic potential to ameliorate TBI-induced cellular pathology.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/fisiologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/fisiologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Microglia/metabolismo , Microglia/patologia , NF-kappa B/metabolismo , Degeneração Neural/tratamento farmacológico , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neuroimunomodulação/efeitos dos fármacos , Neuroimunomodulação/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Ratos Sprague-Dawley , Fatores de Tempo , Resultado do Tratamento
18.
Front Cell Neurosci ; 9: 255, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26217182

RESUMO

The defense of cell volume against excessive shrinkage or swelling is a requirement for cell function and organismal survival. Cell swelling triggers a coordinated homeostatic response termed regulatory volume decrease (RVD), resulting in K(+) and Cl(-) efflux via activation of K(+) channels, volume-regulated anion channels (VRACs), and the K(+)-Cl(-) cotransporters, including KCC3. Here, we show genetic alanine (Ala) substitution at threonines (Thr) 991 and 1048 in the KCC3a isoform carboxyl-terminus, preventing inhibitory phosphorylation at these sites, not only significantly up-regulates KCC3a activity up to 25-fold in normally inhibitory isotonic conditions, but is also accompanied by reversal of activity of the related bumetanide-sensitive Na(+)-K(+)-2Cl(-) cotransporter isoform 1 (NKCC1). This results in a rapid (<10 min) and significant (>90%) reduction in intracellular K(+) content (Ki) via both Cl-dependent (KCC3a + NKCC1) and Cl-independent [DCPIB (VRAC inhibitor)-sensitive] pathways, which collectively renders cells less prone to acute swelling in hypotonic osmotic stress. Together, these data demonstrate the phosphorylation state of Thr991/Thr1048 in KCC3a encodes a potent switch of transporter activity, Ki homeostasis, and cell volume regulation, and reveal novel observations into the functional interaction among ion transport molecules involved in RVD.

19.
Stroke ; 46(7): 1956-1965, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26069258

RESUMO

BACKGROUND AND PURPOSE: WNK kinases, including WNK3, and the associated downstream Ste20/SPS1-related proline-alanine-rich protein kinase (SPAK) and oxidative stress responsive 1 (OSR1) kinases, comprise an important signaling cascade that regulates the cation-chloride cotransporters. Ischemia-induced stimulation of the bumetanide-sensitive Na(+)-K(+)-Cl(-) cotransporter (NKCC1) plays an important role in the pathophysiology of experimental stroke, but the mechanism of its regulation in this context is unknown. Here, we investigated the WNK3-SPAK/OSR1 pathway as a regulator of NKCC1 stimulation and their collective role in ischemic brain damage. METHOD: Wild-type WNK3 and WNK3 knockout mice were subjected to ischemic stroke via transient middle cerebral artery occlusion. Infarct volume, brain edema, blood brain barrier damage, white matter demyelination, and neurological deficits were assessed. Total and phosphorylated forms of WNK3 and SPAK/OSR1 were assayed by immunoblotting and immunostaining. In vitro ischemia studies in cultured neurons and immature oligodendrocytes were conducted using the oxygen-glucose deprivation/reoxygenation method. RESULTS: WNK3 knockout mice exhibited significantly decreased infarct volume and axonal demyelination, less cerebral edema, and accelerated neurobehavioral recovery compared with WNK3 wild-type mice subjected to middle cerebral artery occlusion. The neuroprotective phenotypes conferred by WNK3 knockout were associated with a decrease in stimulatory hyperphosphorylations of the SPAK/OSR1 catalytic T-loop and of NKCC1 stimulatory sites Thr(203)/Thr(207)/Thr(212), as well as with decreased cell surface expression of NKCC1. Genetic inhibition of WNK3 or small interfering RNA knockdown of SPAK/OSR1 increased the tolerance of cultured primary neurons and oligodendrocytes to in vitro ischemia. CONCLUSIONS: These data identify a novel role for the WNK3-SPAK/OSR1-NKCC1 signaling pathway in ischemic neuroglial injury and suggest the WNK3-SPAK/OSR1 kinase pathway as a therapeutic target for neuroprotection after ischemic stroke.


Assuntos
Lesões Encefálicas/enzimologia , Doenças do Sistema Nervoso/enzimologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/biossíntese , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/enzimologia , Animais , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Camundongos Transgênicos , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso/fisiopatologia , Gravidez , Proteínas Serina-Treonina Quinases/deficiência , Recuperação de Função Fisiológica/fisiologia , Transdução de Sinais/fisiologia , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia
20.
Am J Physiol Renal Physiol ; 308(4): F366-76, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25477473

RESUMO

Sodium-coupled SLC12 cation chloride cotransporters play important roles in cell volume and chloride homeostasis, epithelial fluid secretion, and renal tubular salt reabsorption. These cotransporters are phosphorylated and activated indirectly by With-No-Lysine (WNK) kinases through their downstream effector kinases, Ste20- and SPS1-related proline alanine-rich kinase (SPAK) and oxidative stress-responsive kinase 1 (OSR1). Multiple WNK kinases can coexist within a single cell type, although their relative contributions to SPAK/OSR1 activation and salt transport remain incompletely understood. Deletion of specific WNKs from cells that natively express a functional WNK-SPAK/OSR1 network will help resolve these knowledge gaps. Here, we outline a simple method to selectively knock out full-length WNK1 expression from mammalian cells using RNA-guided clustered regularly interspaced short palindromic repeats/Cas9 endonucleases. Two clonal cell lines were generated by using a single-guide RNA (sgRNA) targeting exon 1 of the WNK1 gene, which produced indels that abolished WNK1 protein expression. Both cell lines exhibited reduced endogenous WNK4 protein abundance, indicating that WNK1 is required for WNK4 stability. Consistent with an on-target effect, the reduced WNK4 abundance was associated with increased expression of the KLHL3/cullin-3 E3 ubiquitin ligase complex and was rescued by exogenous WNK1 overexpression. Although the morphology of the knockout cells was indistinguishable from control, they exhibited low baseline SPAK/OSR1 activity and failed to trigger regulatory volume increase after hypertonic stress, confirming an essential role for WNK1 in cell volume regulation. Collectively, our data show how this new, powerful, and accessible gene-editing technology can be used to dissect and analyze WNK signaling networks.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Silenciamento de Genes/métodos , Genoma Humano , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Forma Celular , Tamanho Celular , Proteínas Culina/genética , Proteínas Culina/metabolismo , Regulação para Baixo , Éxons , Genótipo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas dos Microfilamentos , Antígenos de Histocompatibilidade Menor , Pressão Osmótica , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Transdução de Sinais , Fatores de Tempo , Transfecção , Proteína Quinase 1 Deficiente de Lisina WNK
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...