Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 48(20): 6709-6713, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31062813

RESUMO

Many microelectronic devices require thin films of silver or gold as wiring layers. We report silver(i) and gold(i) bicyclic amidinate complexes, wherein the constrained ligand geometry lessens the propensity for thermal decomposition. These new volatile compounds provide metallic films of silver and gold during CVD with hydrogen below 230 °C.

2.
Chem Sci ; 8(4): 2790-2794, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28553515

RESUMO

The local environment at polarized solid-liquid interfaces provides a unique medium for chemical reactions that could be exploited to control the selectivity of non-faradaic reactions. Polarized interfaces are commonly prepared by applying a voltage to an electrode in an electrolyte solution, but it is challenging to achieve high surface charge densities while suppressing faradaic reactions. Ferroelectric materials have permanent surface charge densities that arise from the dipole moments of ferroelectric domains and can be used to create polarized solid-liquid interfaces without applying a voltage. We studied the effects of ferroelectric oxides on the selectivity of a Rh porphyrin-catalyzed carbene rearrangement. The addition of ferroelectric BaTiO3 nanoparticles to the reaction solution changed the product ratio in the same direction and by a similar magnitude as performing the reaction at an electrode-electrolyte interface polarized by a voltage. The results demonstrate that colloidal suspensions of BaTiO3 nanoparticles act as a dispersible polarized interface that can influence the selectivity of non-faradaic reactions.

3.
J Am Chem Soc ; 135(30): 11257-65, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23837635

RESUMO

An intramolecular reaction catalyzed by Rh porphyrins was studied in the presence of interfacial electric fields. 1-Diazo-3,3-dimethyl-5-phenylhex-5-en-2-one (2) reacts with Rh porphyrins via a putative carbenoid intermediate to form cyclopropanation product 3,3-dimethyl-5-phenylbicyclo[3.1.0]hexan-2-one (3) and insertion product 3,3-dimethyl-2,3-dihydro-[1,1'-biphenyl]-4(1H)-one (4). To study this reaction in the presence of an interfacial electric field, Si electrodes coated with thin films of insulating dielectric layers were used as the opposing walls of a reaction vessel, and Rh porphyrin catalysts were localized to the dielectric-electrolyte interface. The charge density was varied at the interface by changing the voltage across the two electrodes. The product ratio was analyzed as a function of the applied voltage and the surface chemistry of the dielectric layer. In the absence of an applied voltage, the ratio of 3:4 was approximately 10:1. With a TiO2 surface, application of a voltage induced a Rh porphyrin-TiO2 interaction that resulted in an increase in the 3:4 ratio to a maximum in which 4 was nearly completely suppressed (>100:1). With an Al2O3 surface or an alkylphosphonate-coated surface, the voltage caused a decrease in the 3:4 ratio, with a maximum effect of lowering the ratio to 1:2. The voltage-induced decrease in the 3:4 ratio in the absence of TiO2 was consistent with a field-dipole effect that changed the difference in activation energies for the product-determining step to favor product 4. Effects were observed for porphyrin catalysts localized to the electrode-electrolyte interface either through covalent attachment or surface adsorption, enabling the selectivity to be controlled with unfunctionalized Rh porphyrins. The magnitude of the selectivity change was limited by the maximum interfacial charge density that could be attained before dielectric breakdown.

4.
J Am Chem Soc ; 134(1): 186-9, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22191979

RESUMO

The rearrangement of cis-stilbene oxide catalyzed by Al(2)O(3) was studied in the presence of interfacial electric fields. Thin films of Al(2)O(3) deposited on Si electrodes were used as the opposing walls of a reaction vessel. Application of a voltage across the electrodes engendered electrochemical double layer formation at the Al(2)O(3)-solution interface. The aldehyde to ketone product ratio of the rearrangement was increased by up to a factor of 63 as the magnitude of the double layer charge density was increased. The results support a field-dipole effect on the selectivity of the catalytic reaction.


Assuntos
Óxido de Alumínio/química , Eletroquímica/métodos , Compostos de Epóxi/química , Catálise , Ácidos de Lewis/química , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...