Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 69(11): 2291-2303, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32504247

RESUMO

Target expression heterogeneity and the presence of an immunosuppressive microenvironment can hamper severely the efficiency of immunotherapeutic approaches. We have analyzed the potential to encounter and overcome such conditions by a combinatory two-target approach involving a bispecific antibody retargeting T cells to tumor cells and tumor-directed antibody-fusion proteins with costimulatory members of the B7 and TNF superfamily. Targeting the tumor-associated antigens EpCAM and EGFR with the bispecific antibody and costimulatory fusion proteins, respectively, we analyzed the impact of target expression and the influence of the immunosuppressive factors IDO, IL-10, TGF-ß, PD-1 and CTLA-4 on the targeting-mediated stimulation of T cells. Here, suboptimal activity of the bispecific antibody at diverse EpCAM expression levels could be effectively enhanced by targeting-mediated costimulation by B7.1, 4-1BBL and OX40L in a broad range of EGFR expression levels. Furthermore, the benefit of combined costimulation by B7.1/4-1BBL and 4-1BBL/OX40L was demonstrated. In addition, the expression of immunosuppressive factors was shown in all co-culture settings, where blocking of prominent factors led to synergistic effects with combined costimulation. Thus, targeting-mediated costimulation showed general promise for a broad application covering diverse target expression levels, with the option for further selective enhancement by the identification and blockade of main immunosuppressive factors of the particular tumor environment.


Assuntos
Anticorpos Biespecíficos/imunologia , Antígenos de Neoplasias/imunologia , Molécula de Adesão da Célula Epitelial/imunologia , Proteínas Recombinantes de Fusão/imunologia , Linfócitos T/imunologia , Anticorpos Biespecíficos/farmacologia , Linhagem Celular Tumoral , Receptores ErbB/imunologia , Humanos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Proteínas Recombinantes de Fusão/farmacologia , Linfócitos T/efeitos dos fármacos , Evasão Tumoral/efeitos dos fármacos , Evasão Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
2.
Mol Cancer Ther ; 18(7): 1278-1288, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31040163

RESUMO

IL15 and costimulatory receptors of the tumor necrosis superfamily (TNFRSF) have shown great potential to support and drive an antitumor immune response. However, their efficacy as monotherapy is limited. Here, we present the development of a novel format for a trifunctional antibody-fusion protein that combines and focuses the activity of IL15/TNFSF-ligand in a targeting-mediated manner to the tumor site. The previously reported format consisted of a tumor-directed antibody (scFv), IL15 linked to an IL15Rα-fragment (RD), and the extracellular domain of 4-1BBL, where noncovalent trimerization of 4-1BBL into its functional unit led to a homotrimeric molecule with 3 antibody and 3 IL15-RD units. To reduce the size and complexity of the molecule, we have now designed a second format, where 4-1BBL is introduced as single-chain (sc), that is 3 consecutively linked 4-1BBL ectodomains. Thus, a monomeric trifunctional fusion protein presenting only 1 functional unit of each component was generated. Interestingly, the in vitro activity on T-cell stimulation was conserved or even enhanced for the soluble and target-bound molecule, respectively. Also, in a lung tumor mouse model, comparable antitumor effects were observed. Furthermore, corroborating the concept, OX40L and GITRL were also successfully incorporated into the novel single-chain format and the advantage of target-bound trifunctional versus corresponding combined bifunctional fusion proteins demonstrated by measuring T-cell proliferation and cytotoxic potential in vitro and antitumor effects of RD_IL15_scFv_scGITRL in a lung tumor mouse model in vivo Thus, the trifunctional antibody-fusion protein single-chain format constitutes a promising innovative platform for further therapeutic developments.


Assuntos
Imunoterapia/métodos , Interleucina-15/imunologia , Neoplasias Pulmonares/imunologia , Proteínas Recombinantes de Fusão/uso terapêutico , Animais , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Proteínas Recombinantes de Fusão/farmacologia
3.
MAbs ; 11(5): 919-929, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30951400

RESUMO

Multivalent mono- or bispecific antibodies are of increasing interest for therapeutic applications, such as efficient receptor clustering and activation, or dual targeting approaches. Here, we present a novel platform for the generation of Ig-like molecules, designated diabody-Ig (Db-Ig). The antigen-binding site of Db-Ig is composed of a diabody in the VH-VL orientation stabilized by fusion to antibody-derived homo- or heterodimerization domains, e.g., CH1/CL or the heavy chain domain 2 of IgE (EHD2) or IgM (MHD2), further fused to an Fc region. In this study, we applied the Db-Ig format for the generation of tetravalent bispecific antibodies (2 + 2) directed against EGFR and HER3 and utilizing different dimerization domains. These Db-Ig antibodies retained the binding properties of the parental antibodies and demonstrated unhindered simultaneous binding of both antigens. The Db-Ig antibodies could be purified by a single affinity chromatography resulting in a homogenous preparation. Furthermore, the Db-Igs were highly stable in human plasma. Importantly, only one short peptide linker (5 aa) per chain is required to generate a Db-Ig molecule, reducing the potential risk of immunogenicity. The presence of a fully functional Fc resulted in IgG-like pharmacokinetic profiles of the Db-Ig molecules. Besides tetravalent bispecific molecules, this modular platform technology further allows for the generation of other multivalent molecules of varying specificity and valency, including mono-, bi-, tri- and tetra-specific molecules, and thus should be suitable for numerous applications.


Assuntos
Anticorpos Biespecíficos/imunologia , Dimerização , Anticorpos Biespecíficos/metabolismo , Anticorpos Biespecíficos/farmacocinética , Apoptose/imunologia , Receptores ErbB/imunologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Receptor ErbB-3/imunologia
4.
Methods Mol Biol ; 1827: 351-364, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30196506

RESUMO

Antibody-fusion proteins with ligands, e.g., of the TNF superfamily (TNFSF) can be adequately produced in mammalian expression systems. Here, we describe the transient production in adherent and suspension human embryonic kidney cells at laboratory scale, followed by purification procedures applying protein A and immobilized metal affinity chromatography for proteins with Fc domain and 6 × histidine-tag, respectively. In addition, characterization of the purified proteins by size exclusion chromatography is described.


Assuntos
Anticorpos/isolamento & purificação , Cromatografia de Afinidade/métodos , Cromatografia em Gel/métodos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/isolamento & purificação , Fatores de Necrose Tumoral/metabolismo , Células HEK293 , Histidina/metabolismo , Humanos , Ligantes , Oligopeptídeos/metabolismo
5.
Oncoimmunology ; 6(12): e1361594, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29209565

RESUMO

Therapeutic strategies aiming for the induction of an effective immune response at the tumor site can be severely hampered by the encounter of an immunosuppressive microenvironment. We investigated here the potential of concerted costimulation by tumor-directed antibody-fusion proteins with B7.1, 4-1BBL and OX40L to enforce bispecific antibody-induced T cell stimulation in presence of recognized immunosuppressive factors including IL-10, TGF-ß, indoleamine 2,3-dioxygenase (IDO), PD-L1 and regulatory T cells. The expression and activity of these factors was demonstrated in the HT1080-FAP/PBMC co-culture setting, where individual and combined costimulation were still capable to enhance T cell stimulation, even though the general activation level was reduced. Additional blockade of TGF-ß or PD-1 resulted especially effective in further enhancing the degree of T cell activation. Here, best outcome was achieved by combined costimulation of targeted 4-1BBL and B7.1. Furthermore, their individual impact on the proliferation of naïve, memory and effector CD8+ and CD4+ T cell subsets, suggest the coverage of a comprehensive T cell response. Thus, our costimulatory antibody-fusion proteins show great potential to support T cell activation in adverse conditions dictated by the tumor microenvironment.

6.
Oncoimmunology ; 5(11): e1238540, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27999756

RESUMO

Co-stimulation via receptors of the tumor necrosis factor superfamily (TNFSF) emerges as promising strategy to support antitumor immune responses. Targeted strategies with antibody-fusion proteins composed of a tumor-directed antibody part and the extracellular domain of a co-stimulatory ligand of the TNFSF constitute an attractive option to focus the co-stimulatory activity to the tumor site. Since TNFSF members intrinsically form functional units of non-covalently linked homotrimers, the protein engineering of suitable antibody-fusion proteins is challenging. Aiming for molecules of simple and stable configuration, we used TNFSF ligands in a single-chain format (scTNFSF), i.e., three units of the ectodomain connected by polypeptide linkers, folding into an intramolecular trimer. By fusing tumor-directed scFv antibody fragments directed against EpCAM or FAP to co-stimulatory scTNFSF molecules (sc4-1BBL, scOX40L, scGITRL or scLIGHT), a set of monomeric scFv-scTNFSF fusion proteins was generated. In comparison to the scFv-TNFSF format, defined by intermolecular homotrimerization via the TNFSF part, scFv-scTNFSF showed equal or enhanced co-stimulatory activity despite reduced avidity in antibody binding. In addition, enhanced serum stability and improved bioavailability in mice were observed. We show that the scFv-scTNFSF format can be applied to various members of the TNFSF, presenting targeting-dependent co-stimulatory activity. Hence, this format exhibits favorable properties that make it a promising choice for further therapeutic fusion protein development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...