Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 123(16): 10666-10676, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31049123

RESUMO

Interactions of nanoparticles (NPs) with their environment may have a pronounced effect on their structure and shape as well as on their functionality in applications such as catalysis. It is therefore crucial to disentangle the particle-adsorbate and particle-support interaction effects on the particle shape, its local structure, atomic dynamics, and its possible anisotropies. In order to gain insight into the support effect, we carried out an X-ray absorption fine-structure spectroscopy (XAFS) investigation of adsorbate- and ligand-free size-selected Pt NPs deposited on two different supports in ultrahigh vacuum. Polarization-dependent XAFS measurements, neural network-based analysis of X-ray absorption near-edge structure data, and reverse Monte Carlo (RMC) simulations of extended X-ray absorption fine structure (EXAFS) were used to resolve the 3D shape of the NPs and details of their local structure. A synergetic combination of advanced in situ XAFS analysis with atomic force microscopy and scanning tunneling microscopy (STM) imaging provides uniquely detailed information about the particle-support interactions and the NP/support buried interface, not accessible to any experimental technique, when considered alone. In particular, our combined approach reveals differences in the structure of Pt NPs deposited on TiO2(110) and SiO2/Si(111). Pt NPs on SiO2 assume a spherical-like 3D shape and weakly interact with the support. In contrast, the effective shape of analogously synthesized Pt NPs on TiO2(110) after annealing at 600 °C is found to be a truncated octahedron with (100) top and interfacial facets that are encapsulated by the TiO2 support. Modeling disorder effects in these NPs using an RMC approach reveals differences in bond-length distributions for NPs on different supports and allows us to analyze their anisotropy, which may be crucial for the interpretation of support-dependent atomic dynamics and can have an impact on the understanding of the catalytic properties of these NPs.

2.
Nanoscale ; 8(22): 11635-41, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27216883

RESUMO

Thermodynamically stable shape-selected Pt and Pd nanoparticles (NPs) were synthesized via inverse micelle encapsulation and a subsequent thermal treatment in vacuum above 1000 °C. The majority of the Pd NPs imaged via scanning tunneling microscopy (STM) had a truncated octahedron shape with (111) top and interfacial facets, while the Pt NPs were found to adopt a variety of shapes. For NPs of identical shape for both material systems, the NP-support adhesion energy calculated based on STM data was found to be size-dependent, with large NPs (e.g. ∼6 nm) having lower adhesion energies than smaller NPs (e.g. ∼1 nm). This phenomenon was rationalized based on support-induced strain that for larger NPs favors the formation of lattice dislocations at the interface rather than a lattice distortion that may propagate through the smaller NPs. In addition, identically prepared Pt NPs of the same shape were found to display a lower adhesion energy compared to Pd NPs. While in both cases, a transition from a lattice distortion to interface dislocations is expected to occur with increasing NP size, the higher elastic energy in Pt leads to a lower transition size, which in turn lowers the adhesion energy of Pt NPs compared to Pd.

3.
Phys Chem Chem Phys ; 14(33): 11766-79, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22828479

RESUMO

This study presents a systematic detailed experimental and theoretical investigation of the electronic properties of size-controlled free and γ-Al(2)O(3)-supported Pt nanoparticles (NPs) and their evolution with decreasing NP size and adsorbate (H(2)) coverage. A combination of in situ X-ray absorption near-edge structure (XANES) and density functional theory (DFT) calculations revealed changes in the electronic characteristics of the NPs due to size, shape, NP-adsorbate (H(2)) and NP-support interactions. A correlation between the NP size, number of surface atoms and coordination of such atoms, and the maximum hydrogen coverage stabilized at a given temperature is established, with H/Pt ratios exceeding the 1 : 1 ratio previously reported for bulk Pt surfaces.

4.
Phys Chem Chem Phys ; 14(32): 11457-67, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22801490

RESUMO

The thermal stability of inverse micelle prepared Pt nanoparticles (NPs) supported on nanocrystalline γ-Al(2)O(3) was monitored in situ under different chemical environments (H(2), O(2), H(2)O) via extended X-ray absorption fine-structure spectroscopy (EXAFS) and ex situ via scanning transmission electron microscopy (STEM). Drastic differences in the stability of identically synthesized NP samples were observed upon exposure to two different pre-treatments. In particular, exposure to O(2) at 400 °C before high temperature annealing in H(2) (800 °C) was found to result in the stabilization of the inverse micelle prepared Pt NPs, reaching a maximum overall size after moderate coarsening of ∼1 nm. Interestingly, when an analogous sample was pre-treated in H(2) at ∼400 °C, a final size of ∼5 nm was reached at 800 °C. The beneficial role of oxygen in the stabilization of small Pt NPs was also observed in situ during annealing treatments in O(2) at 450 °C for several hours. In particular, while NPs of 0.5 ± 0.1 nm initial average size did not display any significant sintering (0.6 ± 0.2 nm final size), an analogous thermal treatment in hydrogen leads to NP coarsening (1.2 ± 0.3 nm). The same sample pre-dosed and annealed in an atmosphere containing water only displayed moderate sintering (0.8 ± 0.3 nm). Our data suggest that PtO(x) species, possibly modifying the NP/support interface, play a role in the stabilization of small Pt NPs. Our study reveals the enhanced thermal stability of inverse micelle prepared Pt NPs and the importance of the sample pre-treatment and annealing environment in the minimization of undesired sintering processes affecting the catalytic performance of nanosized particles.

5.
J Phys Chem Lett ; 3(5): 608-12, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26286156

RESUMO

The present scanning tunneling microscopy study describes the high-temperature growth of TiO2 nanostripes with tunable width, orientation, and spacing, mediated by thermally stable micellar Pt and Au NPs deposited on TiO2(110). This phenomenon could not be explained by spillover effects but is based on the preferential stabilization of [11̅0] step edges on TiO2(110) by the metal NPs. Contrary to the behavior of physical-vapor-deposited NPs, which are known to move toward step edges upon annealing, our micellar NPs remain immobile up to 1000 °C. Instead, the mobility of TiO2 step edges toward the micellar NPs, where they become stabilized, is observed. Our findings are relevant to the technological application of nanostructured materials in the fields of catalysis, molecular electronics, and plasmonics.

6.
Nano Lett ; 11(12): 5290-6, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22026561

RESUMO

The shape of platinum and gold nanoparticles (NPs) synthesized via inverse micelle encapsulation and supported on TiO2(110) has been resolved by scanning tunneling microscopy. Annealing these systems at high temperature (∼1000 °C) and subsequent cooling to room temperature produced ordered arrays of well-separated three-dimensional faceted NPs in their equilibrium state. The observed shapes differ from the kinetically limited shapes of conventional physical vapor deposited NPs, which normally form two-dimensional flat islands upon annealing at elevated temperatures. The initial NP volume was found to provide a means to control the final NP shape. Despite the liquid-phase ex situ synthesis of the micellar particles, the in situ removal of the encapsulating ligands and subsequent annealing consistently lead to the development of a well-defined epitaxial relationship of the metal NPs with the oxide support. The observed epitaxial relationships could be explained in terms of the best overlap between the interfacial Pt (or Au) and TiO2 lattices. In most cases, the ratio of {100}/{111} facets obtained for the NP shapes resolved clearly deviates from that of conventional bulklike Wulff structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...