Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(21): 5181-5193, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38687579

RESUMO

Hydrothermally prepared copper-doped carbon dots (Cu-CDs) were modified with Ca2+, which serve as an excellent platform for the recognition of glycine. The feeble emission of Ca@Cu-CD increases substantially in the presence of glycine due to aggregation-induced emission. At the same time, there was a 5-fold increase in the current response of the Ca@Cu-CD modified electrode as compared to the control. The exceptional combination of fluorescence and conducting properties, along with Ca-glycine interaction, establishes our probe as a dual sensor for the detection of glycine in real serum samples. The limit of detection for this nonenzymatic fluorescence and electrochemical sensing are 17.2 and 4.1 nM, respectively. Furthermore, an extensive evaluation of the toxicity and bioimaging properties in fruit fly Drosophila melanogaster shows that the Ca@Cu-CD probe is not cytotoxic and can be applied for ex vivo imaging of glycine.


Assuntos
Cobre , Drosophila melanogaster , Glicina , Pontos Quânticos , Glicina/química , Cobre/química , Animais , Pontos Quânticos/química , Carbono/química , Cálcio/análise , Cálcio/química , Corantes Fluorescentes/química , Imagem Óptica , Tamanho da Partícula
3.
ACS Appl Bio Mater ; 6(10): 4314-4325, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37782070

RESUMO

Bacterial infection and the development of antibiotic-resistant bacteria have decreased the effectiveness of traditional antibiotic treatments for wound healing. The design of a multifunctional adhesive hydrogel with antibacterial activity, self-healing properties, and on-demand removability to promote wound healing is highly desirable. In this work, a photothermal cyclodextrin with a NO-releasing moiety has been incorporated within an oxidized sodium alginate conjugated polyacrylamide (OS@PA) hydrogel to get a photothermal NO-releasing GSNOCD-OS@PA hydrogel. Such a multifunctional hydrogel has the unique feature of combined antibacterial activity as a result of a controlled photothermal effect and NO gas release under an 808 near-infrared laser. Because of oxidized sodium alginate (OSA), the hydrogel matrix easily adheres to the skin under twisted and bent states. In vitro cytotoxicity analysis against 3T3 cells showed that the hydrogels OS@PA and GSNOCD-OS@PA are noncytotoxic under laser exposure. The temperature-induced NO release by GSNOCD-OS@PA reached 31.7 mg/L when irradiated with an 808 nm laser for 10 min. The combined photothermal therapy and NO release from GSNOCD-OS@PA effectively reduced viability of both Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) to 3 and 5%, respectively. Importantly, the phototherapeutic NO-releasing platform displayed effective fibroblast proliferation in a cell scratch assay.


Assuntos
Adesivos , Hidrogéis , Camundongos , Animais , Hidrogéis/farmacologia , Antibacterianos , Cicatrização , Alginatos/farmacologia
4.
Carbohydr Polym ; 95(2): 728-32, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23648034

RESUMO

A series of cellulose based nanobiocomposites (cellulose/BN) were prepared with incorporation of various percentage of nano boron nitride (BN). The interaction between cellulose and boron nitride was studied by Fourier transform infrared spectroscopy (FTIR). The structure of cellulose/BN nanobiocomposites was investigated by XRD, FESEM, and HRTEM. It was observed that the boron nitride nanoparticles were dispersed within cellulose matrix due to intercalation and partial exfoliation. The quantitative identification of nanobiocomposites was investigated by selected area electron diffraction (SAED). Thermal stabilities of the prepared nanobiocomposites were measured by thermo gravimetric analysis (TGA) and it was found that thermal stability of the nanobiocomposites was higher than the virgin cellulose. The oxygen barrier property of cellulose/BN nanobiocomposites was measured using a gas permeameter and a substantial reduction in oxygen permeability due to increase in boron nitride loading was observed. Further it was noticed that the chemical resistance of the nanobiocomposites was more than the virgin cellulose. Hence, the prepared nanobiocomposite may be widely used for insulating and temperature resistant packaging materials.


Assuntos
Compostos de Boro/química , Celulose/química , Plásticos/química , Oxigênio/química , Plásticos/síntese química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...