Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 7(6)2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35167490

RESUMO

Sporozoite-based approaches currently represent the most effective vaccine strategies for induction of sterile protection against Plasmodium falciparum (Pf) malaria. Clinical development of subunit vaccines is almost exclusively centered on the circum-sporozoite protein (CSP), an abundantly expressed protein on the sporozoite membrane. Anti-CSP antibodies are able to block sporozoite invasion and development in human hepatocytes and subsequently prevent clinical malaria. Here, we have investigated whether sporozoite-induced human antibodies with specificities different from CSP can reduce Pf-liver stage development. IgG preparations were obtained from 12 volunteers inoculated with a protective immunization regime of whole sporozoites under chloroquine prophylaxis. These IgGs were depleted for CSP specificity by affinity chromatography. Recovered non-CSP antibodies were tested for sporozoite membrane binding and for functional inhibition of sporozoite invasion of a human hepatoma cell line and hepatocytes both in vitro and in vivo. Postimmunization IgGs depleted for CS specificity of 9 of 12 donors recognized sporozoite surface antigens. Samples from 5 of 12 donors functionally reduced parasite-liver cell invasion or development using the hepatoma cell line HC-04 and FRG-huHep mice containing human liver cells. The combined data provide clear evidence that non-CSP proteins, as yet undefined, do represent antibody targets for functional immunity against Pf parasites responsible for malaria.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Vacinas Antimaláricas , Malária Falciparum , Malária , Parasitos , Animais , Anticorpos Antiprotozoários , Carcinoma Hepatocelular/tratamento farmacológico , Hepatócitos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Malária/tratamento farmacológico , Camundongos , Plasmodium falciparum , Proteínas de Protozoários , Esporozoítos
2.
Nat Commun ; 10(1): 874, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787276

RESUMO

Recent evidence suggests that certain vaccines, including Bacillus-Calmette Guérin (BCG), can induce changes in the innate immune system with non-specific memory characteristics, termed 'trained immunity'. Here we present the results of a randomised, controlled phase 1 clinical trial in 20 healthy male and female volunteers to evaluate the induction of immunity and protective efficacy of the anti-tuberculosis BCG vaccine against a controlled human malaria infection. After malaria challenge infection, BCG vaccinated volunteers present with earlier and more severe clinical adverse events, and have significantly earlier expression of NK cell activation markers and a trend towards earlier phenotypic monocyte activation. Furthermore, parasitemia in BCG vaccinated volunteers is inversely correlated with increased phenotypic NK cell and monocyte activation. The combined data demonstrate that BCG vaccination alters the clinical and immunological response to malaria, and form an impetus to further explore its potential in strategies for clinical malaria vaccine development.


Assuntos
Vacina BCG/imunologia , Imunidade Inata/imunologia , Memória Imunológica/imunologia , Células Matadoras Naturais/imunologia , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Adolescente , Adulto , Animais , Anopheles/parasitologia , Antígeno B7-2/metabolismo , Vacina BCG/administração & dosagem , Proteína C-Reativa/metabolismo , Citocinas/sangue , Feminino , Proteínas Ligadas por GPI/metabolismo , Granzimas/sangue , Antígenos HLA-DR/metabolismo , Humanos , Interferon gama/sangue , Ativação Linfocitária/imunologia , Masculino , Parasitemia/prevenção & controle , Plasmodium falciparum/imunologia , Receptores de IgG/metabolismo , Vacinação , Adulto Jovem
3.
BMC Med ; 16(1): 61, 2018 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-29706136

RESUMO

BACKGROUND: Antibodies targeting Plasmodium falciparum sporozoites play a key role in human immunity to malaria. However, antibody mechanisms that neutralize sporozoites are poorly understood. This has been a major constraint in developing highly efficacious vaccines, as we lack strong correlates of protective immunity. METHODS: We quantified the ability of human antibodies from malaria-exposed populations to interact with human complement, examined the functional effects of complement activity against P. falciparum sporozoites in vitro, and identified targets of functional antibodies. In children and adults from malaria-endemic regions, we determined the acquisition of complement-fixing antibodies to sporozoites and their relationship with antibody isotypes and subclasses. We also investigated associations with protective immunity in a longitudinal cohort of children (n = 206) residing in a malaria-endemic region. RESULTS: We found that antibodies to the major sporozoite surface antigen, circumsporozoite protein (CSP), were predominately IgG1, IgG3, and IgM, and could interact with complement through recruitment of C1q and activation of the classical pathway. The central repeat region of CSP, included in leading vaccines, was a key target of complement-fixing antibodies. We show that antibodies activate human complement on P. falciparum sporozoites, which consequently inhibited hepatocyte cell traversal that is essential for establishing liver-stage infection, and led to sporozoite death in vitro. The natural acquisition of complement-fixing antibodies in malaria-exposed populations was age-dependent, and was acquired more slowly to sporozoite antigens than to merozoite antigens. In a longitudinal cohort of children, high levels of complement-fixing antibodies were significantly associated with protection against clinical malaria. CONCLUSIONS: These novel findings point to complement activation by antibodies as an important mechanism of anti-sporozoite human immunity, thereby enabling new strategies for developing highly efficacious malaria vaccines. We also present evidence that complement-fixing antibodies may be a valuable correlate of protective immunity in humans.


Assuntos
Vacinas Antimaláricas/uso terapêutico , Malária/prevenção & controle , Plasmodium falciparum/imunologia , Esporozoítos/imunologia , Feminino , Humanos , Vacinas Antimaláricas/farmacologia , Masculino
4.
Infect Immun ; 86(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29735521

RESUMO

Long-lasting and sterile homologous protection against malaria can be achieved by the exposure of malaria-naive volunteers under chemoprophylaxis to Plasmodium falciparum-infected mosquitoes (chemoprophylaxis and sporozoite [CPS] immunization). While CPS-induced antibodies neutralize sporozoite infectivity in vitro and in vivo, antibody-mediated effector mechanisms are still poorly understood. Here, we investigated whether complement contributes to CPS-induced preerythrocytic immunity. Sera collected before and after CPS immunization in the presence of active or inactive complement were assessed for the recognition of homologous NF54 and heterologous NF135.C10 sporozoites, complement fixation, sporozoite lysis, and possible subsequent effects on in vitro sporozoite infectivity in human hepatocytes. CPS immunization induced sporozoite-specific IgM (P < 0.0001) and IgG (P = 0.001) antibodies with complement-fixing capacities (P < 0.0001). Sporozoite lysis (P = 0.017), traversal (P < 0.0001), and hepatocyte invasion inhibition (P < 0.0001) by CPS-induced antibodies were strongly enhanced in the presence of active complement. Complement-mediated invasion inhibition in the presence of CPS-induced antibodies negatively correlated with cumulative parasitemia during CPS immunizations (P = 0.013). While IgG antibodies similarly recognized homologous and heterologous sporozoites, IgM binding to heterologous sporozoites was reduced (P = 0.023). Although CPS-induced antibodies did not differ in their abilities to fix complement, lyse sporozoites, or inhibit the traversal of homologous and heterologous sporozoites, heterologous sporozoite invasion was more strongly inhibited in the presence of active complement (P = 0.008). These findings demonstrate that CPS-induced antibodies have complement-fixing activity, thereby significantly further enhancing the functional inhibition of homologous and heterologous sporozoite infectivity in vitro The combined data highlight the importance of complement as an additional immune effector mechanism in preerythrocytic immunity after whole-parasite immunization against Plasmodium falciparum malaria.


Assuntos
Formação de Anticorpos/fisiologia , Antimaláricos/imunologia , Antimaláricos/uso terapêutico , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/imunologia , Esporozoítos/efeitos dos fármacos , Formação de Anticorpos/imunologia , Humanos , Imunização , Esporozoítos/imunologia , Vacinação
5.
Wellcome Open Res ; 3: 159, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30828645

RESUMO

Background: Individuals living in malaria-endemic regions develop immunity against severe malaria, but it is unclear whether immunity against pre-erythrocytic stages that blocks initiation of blood-stage infection after parasite inoculation develops following continuous natural exposure. Methods: We cleared schoolchildren living in an area (health district of Saponé, Burkina Faso) with highly endemic seasonal malaria of possible sub-patent infections and examined them weekly for incident infections by nested PCR. Plasma samples collected at enrolment were used to quantify antibodies to the pre-eryhrocytic-stage antigens circumsporozoite protein (CSP) and Liver stage antigen 1 (LSA-1). In vitro sporozoite gliding inhibition and hepatocyte invasion inhibition by naturally acquired antibodies were assessed using Plasmodium falciparum NF54 sporozoites. Associations between antibody responses, functional pre-erythrocytic immunity phenotypes and time to infection detected by 18S quantitative PCR were studied. Results: A total of 51 children were monitored. Anti-CSP antibody titres showed a positive association with sporozoite gliding motility inhibition (P<0.0001, Spearman's ρ=0.76). In vitro hepatocyte invasion was inhibited by naturally acquired antibodies (median inhibition, 19.4% [IQR 15.2-40.9%]), and there were positive correlations between invasion inhibition and gliding inhibition (P=0.005, Spearman's ρ=0.67) and between invasion inhibition and CSP-specific antibodies (P=0.002, Spearman's ρ=0.76). Survival analysis indicated longer time to infection in individuals displaying higher-than-median sporozoite gliding inhibition activity (P=0.01), although this association became non-significant after adjustment for blood-stage immunity (P = 0.06). Conclusions: In summary, functional antibodies against the pre-erythrocytic stages of malaria infection are acquired in children who are repeatedly exposed to Plasmodium parasites. This immune response does not prevent them from becoming infected during a malaria transmission season, but might delay the appearance of blood stage parasitaemia. Our approach could not fully separate the effects of pre-erythrocytic-specific and blood-stage-specific antibody-mediated immune responses in vivo; epidemiological studies powered and designed to address this important question should become a research priority.

6.
BMC Med ; 15(1): 168, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28903777

RESUMO

BACKGROUND: A highly efficacious vaccine is needed for malaria control and eradication. Immunization with Plasmodium falciparum NF54 parasites under chemoprophylaxis (chemoprophylaxis and sporozoite (CPS)-immunization) induces the most efficient long-lasting protection against a homologous parasite. However, parasite genetic diversity is a major hurdle for protection against heterologous strains. METHODS: We conducted a double-blind, randomized controlled trial in 39 healthy participants of NF54-CPS immunization by bites of 45 NF54-infected (n = 24 volunteers) or uninfected mosquitoes (placebo; n = 15 volunteers) against a controlled human malaria infection with the homologous NF54 or the genetically distinct NF135.C10 and NF166.C8 clones. Cellular and humoral immune assays were performed as well as genetic characterization of the parasite clones. RESULTS: NF54-CPS immunization induced complete protection in 5/5 volunteers against NF54 challenge infection at 14 weeks post-immunization, but sterilely protected only 2/10 and 1/9 volunteers against NF135.C10 and NF166.C8 challenge infection, respectively. Post-immunization plasma showed a significantly lower capacity to block heterologous parasite development in primary human hepatocytes compared to NF54. Whole genome sequencing showed that NF135.C10 and NF166.C8 have amino acid changes in multiple antigens targeted by CPS-induced antibodies. Volunteers protected against heterologous challenge were among the stronger immune responders to in vitro parasite stimulation. CONCLUSIONS: Although highly protective against homologous parasites, NF54-CPS-induced immunity is less effective against heterologous parasite clones both in vivo and in vitro. Our data indicate that whole sporozoite-based vaccine approaches require more potent immune responses for heterologous protection. TRIAL REGISTRATION: This trial is registered in clinicaltrials.gov, under identifier NCT02098590 .


Assuntos
Imunização/métodos , Vacinas Antimaláricas/imunologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/imunologia , Esporozoítos/imunologia , Adolescente , Adulto , Animais , Método Duplo-Cego , Voluntários Saudáveis , Humanos , Adulto Jovem
7.
PLoS One ; 10(7): e0131456, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26147206

RESUMO

Combining key antigens from the different stages of the P. falciparum life cycle in the context of a multi-stage-specific cocktail offers a promising approach towards the development of a malaria vaccine ideally capable of preventing initial infection, the clinical manifestation as well as the transmission of the disease. To investigate the potential of such an approach we combined proteins and domains (11 in total) from the pre-erythrocytic, blood and sexual stages of P. falciparum into a cocktail of four different components recombinantly produced in plants. After immunization of rabbits we determined the domain-specific antibody titers as well as component-specific antibody concentrations and correlated them with stage specific in vitro efficacy. Using purified rabbit immune IgG we observed strong inhibition in functional in vitro assays addressing the pre-erythrocytic (up to 80%), blood (up to 90%) and sexual parasite stages (100%). Based on the component-specific antibody concentrations we calculated the IC50 values for the pre-erythrocytic stage (17-25 µg/ml), the blood stage (40-60 µg/ml) and the sexual stage (1.75 µg/ml). While the results underline the feasibility of a multi-stage vaccine cocktail, the analysis of component-specific efficacy indicates significant differences in IC50 requirements for stage-specific antibody concentrations providing valuable insights into this complex scenario and will thereby improve future approaches towards malaria vaccine cocktail development regarding the selection of suitable antigens and the ratios of components, to fine tune overall and stage-specific efficacy.


Assuntos
Anticorpos Antiprotozoários/sangue , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Animais , Imunização , Malária Falciparum/imunologia , Coelhos
8.
PLoS One ; 9(11): e112910, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25396417

RESUMO

Immunization of healthy volunteers with chloroquine ChemoProphylaxis and Sporozoites (CPS-CQ) efficiently and reproducibly induces dose-dependent and long-lasting protection against homologous Plasmodium falciparum challenge. Here, we studied whether chloroquine can be replaced by mefloquine, which is the only other licensed anti-malarial chemoprophylactic drug that does not affect pre-erythrocytic stages, exposure to which is considered essential for induction of protection by CPS immunization. In a double blind randomized controlled clinical trial, volunteers under either chloroquine prophylaxis (CPS-CQ, n = 5) or mefloquine prophylaxis (CPS-MQ, n = 10) received three sub-optimal CPS immunizations by bites from eight P. falciparum infected mosquitoes each, at monthly intervals. Four control volunteers received mefloquine prophylaxis and bites from uninfected mosquitoes. CPS-MQ immunization is safe and equally potent compared to CPS-CQ inducing protection in 7/10 (70%) versus 3/5 (60%) volunteers, respectively. Furthermore, specific antibody levels and cellular immune memory responses were comparable between both groups. We therefore conclude that mefloquine and chloroquine are equally effective in CPS-induced immune responses and protection. Trial registration: ClinicalTrials.gov NCT01422954.


Assuntos
Antimaláricos/uso terapêutico , Cloroquina/uso terapêutico , Malária Falciparum/prevenção & controle , Mefloquina/uso terapêutico , Esporozoítos/imunologia , Adolescente , Adulto , Anticorpos/sangue , Anticorpos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , DNA de Protozoário/análise , Método Duplo-Cego , Eritrócitos/parasitologia , Granzimas/metabolismo , Voluntários Saudáveis , Humanos , Imunidade Celular , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Malária Falciparum/imunologia , Masculino , Plasmodium falciparum/genética , Plasmodium falciparum/fisiologia , Adulto Jovem
9.
Malar J ; 13: 136, 2014 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-24708526

RESUMO

BACKGROUND: Long-lasting and sterile protective immunity against Plasmodium falciparum can be achieved by immunization of malaria-naive human volunteers under chloroquine prophylaxis with sporozoites delivered by mosquito bites (CPS-immunization). Protection is mediated by sporozoite/liver-stage immunity. In this study, the capacity of CPS-induced antibodies to interfere with sporozoite functionality and development was explored. METHODS: IgG was purified from plasma samples obtained before and after CPS-immunization from two separate clinical trials. The functionality of these antibodies was assessed in vitro in gliding and human hepatocyte traversal assays, and in vivo in a human liver-chimeric mouse model. RESULTS: Whereas pre-treatment of sporozoites with 2 mg/ml IgG in the majority of the volunteers did not have an effect on in vitro sporozoite gliding motility, CPS-induced IgG showed a distinct inhibitory effect in the sporozoite in vitro traversal assay. Pre-treatment of P. falciparum sporozoites with post-immunization IgG significantly inhibited sporozoite traversal through hepatocytes in 9/9 samples when using 10 and 1 mg/ml IgG, and was dose-dependent, resulting in an average 16% and 37% reduction with 1 mg/ml IgG (p = 0.003) and 10 mg/ml IgG (p = 0.002), respectively. In vivo, CPS-induced IgG reduced liver-stage infection and/or development after a mosquito infection in the human liver-chimeric mouse model by 91.05% when comparing 11 mice receiving post-immunization IgG to 11 mice receiving pre-immunization IgG (p = 0.0008). CONCLUSIONS: It is demonstrated for the first time that CPS-immunization induces functional antibodies against P. falciparum sporozoites, which are able to reduce parasite-host cell interaction by inhibiting parasite traversal and liver-stage infection. These data highlight the functional contribution of antibody responses to pre-erythrocytic immunity after whole-parasite immunization against P. falciparum malaria.


Assuntos
Antimaláricos/uso terapêutico , Cloroquina/uso terapêutico , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Adulto , Animais , Anopheles , Anticorpos Antiprotozoários/imunologia , Eritrócitos/parasitologia , Humanos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/crescimento & desenvolvimento , Esporozoítos/crescimento & desenvolvimento , Esporozoítos/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...