Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Biofactors ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655699

RESUMO

The multidomain protein BAG3 exerts pleiotropic oncogenic functions in many tumor entities including glioblastoma (GBM). Here, we compared BAG3 protein-protein interactions in either adherently cultured or stem-like cultured U251 GBM cells. In line with BAG3's putative role in regulating stem-like properties, identified interactors in sphere-cultured cells included different stem cell markers (SOX2, OLIG2, and NES), while interactomes of adherent BAG3-proficient cells indicated a shift toward involvement of BAG3 in regulation of cilium assembly (ACTR3 and ARL3). Applying a set of BAG3 deletion constructs we could demonstrate that none of the domains except the WW domain are required for suppression of cilia formation by full-length BAG3 in U251 and U343 cells. In line with the established regulation of the Hippo pathway by this domain, we could show that the WW mutant fails to rescue YAP1 nuclear translocation. BAG3 depletion reduced activation of a YAP1/AURKA signaling pathway and induction of PLK1. Collectively, our findings point to a complex interaction network of BAG3 with several pathways regulating cilia homeostasis, involving processes related to ciliogenesis and cilium degradation.

2.
FEBS J ; 291(1): 114-131, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37690456

RESUMO

The metalloproteinase ovastacin is released by the mammalian egg upon fertilization and cleaves a distinct peptide bond in zona pellucida protein 2 (ZP2), a component of the enveloping extracellular matrix. This limited proteolysis causes zona pellucida hardening, abolishes sperm binding, and thereby regulates fertility. Accordingly, this process is tightly controlled by the plasma protein fetuin-B, an endogenous competitive inhibitor. At present, little is known about how the cleavage characteristics of ovastacin differ from closely related proteases. Physiological implications of ovastacin beyond ZP2 cleavage are still obscure. In this study, we employed N-terminal amine isotopic labeling of substrates (N-TAILS) contained in the secretome of mouse embryonic fibroblasts to elucidate the substrate specificity and the precise cleavage site specificity. Furthermore, we were able to unravel the physicochemical properties governing ovastacin-substrate interactions as well as the individual characteristics that distinguish ovastacin from similar proteases, such as meprins and tolloid. Eventually, we identified several substrates whose cleavage could affect mammalian fertilization. Consequently, these substrates indicate newly identified functions of ovastacin in mammalian fertilization beyond zona pellucida hardening.


Assuntos
Fibroblastos , Sêmen , Masculino , Animais , Camundongos , Glicoproteínas da Zona Pelúcida/metabolismo , Fibroblastos/metabolismo , Sêmen/metabolismo , Metaloproteases/metabolismo , Mamíferos/metabolismo , Endopeptidases , Fertilização/fisiologia
3.
Redox Biol ; 67: 102943, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37883843

RESUMO

Accumulation of misfolded proteins or perturbation of calcium homeostasis leads to endoplasmic reticulum (ER) stress and is linked to the pathogenesis of neurodegenerative diseases. Hence, understanding the ability of neuronal cells to cope with chronic ER stress is of fundamental interest. Interestingly, several brain areas uphold functions that enable them to resist challenges associated with neurodegeneration. Here, we established novel clonal mouse hippocampal (HT22) cell lines that are resistant to prolonged (chronic) ER stress induced by thapsigargin (TgR) or tunicamycin (TmR) as in vitro models to study the adaption to ER stress. Morphologically, we observed a significant increase in vesicular und autophagosomal structures in both resistant lines and 'giant lysosomes', especially striking in TgR cells. While autophagic activity increased under ER stress, lysosomal function appeared slightly impaired; in both cell lines, we observed enhanced ER-phagy. However, proteomic analyses revealed that various protein clusters and signaling pathways were differentially regulated in TgR versus TmR cells in response to chronic ER stress. Additionally, bioenergetic analyses in both resistant cell lines showed a shift toward aerobic glycolysis ('Warburg effect') and a defective complex I of the oxidative phosphorylation (OXPHOS) machinery. Furthermore, ER stress-resistant cells differentially activated the unfolded protein response (UPR) comprising IRE1α and ATF6 pathways. These findings display the wide portfolio of adaptive responses of neuronal cells to chronic ER stress. ER stress-resistant neuronal cells could be the basis to uncover molecular modulators of adaptation, resistance, and neuroprotection as potential pharmacological targets for preventing neurodegeneration.


Assuntos
Endorribonucleases , Proteínas Serina-Treonina Quinases , Camundongos , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Endorribonucleases/genética , Proteômica , Estresse do Retículo Endoplasmático , Resposta a Proteínas não Dobradas , Retículo Endoplasmático/metabolismo
4.
Traffic ; 24(12): 564-575, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37654251

RESUMO

The co-chaperone BAG3 is a hub for a variety of cellular pathways via its multiple domains and its interaction with chaperones of the HSP70 family or small HSPs. During aging and under cellular stress conditions in particular, BAG3, together with molecular chaperones, ensures the sequestration of aggregated or aggregation-prone ubiquitinated proteins to the autophagic-lysosomal system via ubiquitin receptors. Accumulating evidence for BAG3-mediated selective autophagy independent of cargo ubiquitination led to analyses predicting a direct interaction of BAG3 with LC3 proteins. Phylogenetically, BAG3 comprises several highly conserved potential LIRs, LC3-interacting regions, which might allow for the direct targeting of BAG3 including its cargo to autophagosomes and drive their autophagic degradation. Based on pull-down experiments, peptide arrays and proximity ligation assays, our results provide evidence of an interaction of BAG3 with LC3B. In addition, we could demonstrate that disabling all predicted LIRs abolished the inducibility of a colocalization of BAG3 with LC3B-positive structures and resulted in a substantial decrease of BAG3 levels within purified native autophagic vesicles compared with wild-type BAG3. These results suggest an autophagic targeting of BAG3 via interaction with LC3B. Therefore, we conclude that, in addition to being a key co-chaperone to HSP70, BAG3 may also act as a cargo receptor for client proteins, which would significantly extend the role of BAG3 in selective macroautophagy and protein quality control.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Chaperonas Moleculares/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Transporte
5.
Autophagy ; 19(7): 2146-2147, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36416088

RESUMO

Autophagosome isolation enables the thorough investigation of structural components and engulfed materials. Recently, we introduced a novel antibody-based FACS-mediated method for isolation of native macroautophagic/autophagic vesicles and confirmed the quality of the preparations. We performed phospholipidomic and proteomic analyses to characterize autophagic vesicle-associated phospholipids and protein cargoes under different autophagy conditions. Lipidomic analyses identified phosphoglycerides and sphingomyelins within autophagic vesicles and revealed that the lipid composition was unaffected by different rates of autophagosome formation. Proteomic analyses identified more than 4500 potential autophagy substrates and showed that in comparison to autophagic vesicles isolated under basal autophagy conditions, starvation only marginally affected the cargo profile. Proteasome inhibition, however, resulted in the enhanced degradation of ubiquitin-proteasome system components. Taken together, the novel isolation method enriched large quantities of autophagic vesicles and enabled detailed analyses of their lipid and cargo composition.


Assuntos
Autofagia , Complexo de Endopeptidases do Proteassoma , Autofagia/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica , Autofagossomos/metabolismo , Lipídeos
6.
EMBO Rep ; 23(12): e53065, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36215690

RESUMO

Autophagy is responsible for clearance of an extensive portfolio of cargoes, which are sequestered into vesicles, called autophagosomes, and are delivered to lysosomes for degradation. The pathway is highly dynamic and responsive to several stress conditions. However, the phospholipid composition and protein contents of human autophagosomes under changing autophagy rates are elusive so far. Here, we introduce an antibody-based FACS-mediated approach for the isolation of native autophagic vesicles and ensured the quality of the preparations. Employing quantitative lipidomics, we analyze phospholipids present within human autophagic vesicles purified upon basal autophagy, starvation, and proteasome inhibition. Importantly, besides phosphoglycerides, we identify sphingomyelin within autophagic vesicles and show that the phospholipid composition is unaffected by the different conditions. Employing quantitative proteomics, we obtain cargo profiles of autophagic vesicles isolated upon the different treatment paradigms. Interestingly, starvation shows only subtle effects, while proteasome inhibition results in the enhanced presence of ubiquitin-proteasome pathway factors within autophagic vesicles. Thus, here we present a powerful method for the isolation of native autophagic vesicles, which enabled profound phospholipid and cargo analyses.


Assuntos
Complexo de Endopeptidases do Proteassoma , Proteômica , Humanos , Autofagia , Fosfolipídeos
7.
Clin Transl Med ; 12(7): e935, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35834635

RESUMO

BACKGROUND: Exaggerated fibroblast proliferation is a well-known feature in idiopathic pulmonary fibrosis (IPF) which may be - in part - due to insufficient autophagy, a lysosome dependent cellular surveillance pathway. Bcl2-associated athanogene 3 (BAG3) is a pivotal co-chaperone of the autophagy pathway. Here, we studied whether therapeutic modulation of BAG3-mediated autophagy can rescue insufficient autophagy and impact IPF fibroblast proliferation. METHODS: Primary interstitial fibroblasts or precision cut lung slices (PCLS) of IPF lungs were treated with (1) the antifibrotic drug pirfenidone (Pirf), (2) the demethylating agent 5-azacytidine (Aza), (3) the BAG3 modulator cantharidin (Ctd). Autophagy flux was measured following pretreatment with the autophagy inhibitors or by GFP-RFP-LC3B transfection followed by drug treatments. Proliferation was measured by 5-bromo-2'-deoxyuridine assay. BAG3, filamin C (FLNC), proliferating-cell-nuclear-antigen (PCNA), collagen1A1 (COL1A1) and autophagy proteins were assessed by immunoblotting or immunofluorescence. Loss of function experiments were performed by siRNA mediated knockdown of BAG3. RESULTS: In comparison with healthy donors, increased BAG3 protein was observed in IPF lung homogenates and IPF fibroblasts. In addition, the substrate of BAG3-mediated autophagy, FLNC, was increased in IPF fibroblasts, implying insufficient activation of BAG3-dependent autophagy. Therapeutic modulation of this pathway using Aza and Ctd alone or in combination with the IPF therapy drug Pirf rescued the insufficient BAG3-mediated autophagy and decreased fibroblast proliferation. Such effects were observed upon therapeutic modulation of BAG3 but not upon knock down of BAG3 per se in IPF fibroblasts. Similarly, PCLS of IPF patients showed a significant decrease in collagen deposition in response to these drugs, either alone or in a more potent form in combination with Pirf. CONCLUSIONS: Our study reveals that repurposing drugs that modulate autophagy regulating proteins render therapeutic benefits in IPF. Fine tuning of this pathway may hence signify a promising therapeutic strategy to ameliorate antifibrotic properties and augment the efficacy of current IPF therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Autofagia , Fibroblastos , Fibrose Pulmonar Idiopática , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/genética , Autofagia/fisiologia , Colágeno/metabolismo , Fibroblastos/metabolismo , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
8.
J Cell Biochem ; 123(1): 102-114, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33942360

RESUMO

The B-cell CLL 2-associated athanogene (BAG) protein family in general and BAG3, in particular, are pivotal elements of cellular protein homeostasis, with BAG3 playing a major role in macroautophagy. In particular, in the contexts of senescence and degeneration, BAG3 has exhibited an essential role often related to its capabilities to organize and remove aggregated proteins. Exciting studies in different species ranging from human, murine, zebrafish, and plant samples have delivered vital insights into BAG3s' (and other BAG proteins') functions and their regulations. However, so far no studies have addressed neither BAG3's evolution nor its phylogenetic position in the BAG family.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Fungos/metabolismo , Plantas/metabolismo , Proteostase/fisiologia , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Autofagia/fisiologia , Senescência Celular/fisiologia , Evolução Molecular , Humanos , Filogenia , Complexo de Endopeptidases do Proteassoma/metabolismo , Domínios Proteicos , Proteólise
9.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34782467

RESUMO

Nondegradative ubiquitin chains attached to specific targets via Lysine 63 (K63) residues have emerged to play a fundamental role in synaptic function. The K63-specific deubiquitinase CYLD has been widely studied in immune cells and lately also in neurons. To better understand if CYLD plays a role in brain and synapse homeostasis, we analyzed the behavioral profile of CYLD-deficient mice. We found that the loss of CYLD results in major autism-like phenotypes including impaired social communication, increased repetitive behavior, and cognitive dysfunction. Furthermore, the absence of CYLD leads to a reduction in hippocampal network excitability, long-term potentiation, and pyramidal neuron spine numbers. By providing evidence that CYLD can modulate mechanistic target of rapamycin (mTOR) signaling and autophagy at the synapse, we propose that synaptic K63-linked ubiquitination processes could be fundamental in understanding the pathomechanisms underlying autism spectrum disorder.


Assuntos
Autofagia/fisiologia , Hipocampo/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Transtorno do Espectro Autista , Transtorno Autístico , Enzima Desubiquitinante CYLD , Feminino , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso , Neurônios/metabolismo , Sinapses/metabolismo , Ubiquitina/metabolismo , Ubiquitinação
10.
Cell Death Discov ; 7(1): 286, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642296

RESUMO

The sirtuin (SIRT) protein family has been of major research interest over the last decades because of their involvement in aging, cancer, and cell death. SIRTs have been implicated in gene and metabolic regulation through their capacity to remove acyl groups from lysine residues in proteins in an NAD+-dependent manner, which may alter individual protein properties as well as the histone-DNA interaction. Since SIRTs regulate a wide range of different signaling cascades, a fine-tuned homeostasis of these proteins is imperative to guarantee the function and survival of the cell. So far, however, how exactly this homeostasis is established has remained unknown. Here, we provide evidence that neuronal SIRT degradation in Parkinson's disease (PD) models is executed by autophagy rather than the proteasome. In neuronal Lund human mesencephalic (LUHMES) cells, all seven SIRTs were substrates for autophagy and showed an accelerated autophagy-dependent degradation upon 1-methyl-4-phenylpyridinium (MPP+) mediated oxidative insults in vitro, whereas the proteasome did not contribute to the removal of oxidized SIRTs. Through blockade of endogenous H2O2 generation and supplementation with the selective radical scavenger phenothiazine (PHT), we could identify H2O2-derived species as the responsible SIRT-oxidizing agents. Analysis of all human SIRTs suggested a conserved regulatory motif based on cysteine oxidation, which may have triggered their degradation via autophagy. High amounts of H2O2, however, rapidly carbonylated selectively SIRT2, SIRT6, and SIRT7, which were found to accumulate carbonylation-prone amino acids. Our data may help in finding new strategies to maintain and modify SIRT bioavailability in neurodegenerative disorders.

12.
J Biol Chem ; 297(5): 101263, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34600886

RESUMO

Autophagy is a major cellular quality control system responsible for the degradation of proteins and organelles in response to stress and damage to maintain homeostasis. Ubiquitination of autophagy-related proteins or regulatory components is important for the precise control of autophagy pathways. Here, we show that the deubiquitinase ubiquitin-specific protease 11 (USP11) restricts autophagy and that KO of USP11 in mammalian cells results in elevated autophagic flux. We also demonstrate that depletion of the USP11 homolog H34C03.2 in Caenorhabditis elegans triggers hyperactivation of autophagy and protects the animals against human amyloid-ß peptide 42 aggregation-induced paralysis. USP11 coprecipitated with autophagy-specific class III phosphatidylinositol 3-kinase complex I and limited its interaction with nuclear receptor-binding factor 2, thus decreasing lipid kinase activity of class III phosphatidylinositol 3-kinase complex I and subsequent recruitment of effectors such as WD-repeat domain phosphoinositide-interacting proteins to the autophagosomal membrane. Accordingly, more WD-repeat domain phosphoinositide-interacting protein 2 puncta accumulated in USP11 KO cells. In addition, USP11 interacts with and stabilizes the serine/threonine kinase mechanistic target of rapamycin, thereby further contributing to the regulation of autophagy induction. Taken together, our data suggested that USP11 impinges on the autophagy pathway at multiple sites and that inhibiting USP11 alleviates symptoms of proteotoxicity, which is a major hallmark of neurodegenerative diseases.


Assuntos
Autofagia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Tioléster Hidrolases/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Linhagem Celular , Técnicas de Inativação de Genes , Humanos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Tioléster Hidrolases/genética
13.
J Cell Biochem ; 122(6): 602-611, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33522032

RESUMO

Recent advances in the yeast Saccharomyces cerevisiae and higher eukaryotes have been increasingly connecting lipid droplet (LD) dynamics to the regulation of autophagy. In this review we will discuss implications that connect LD de novo synthesis and LD mobilization to autophagy and how autophagy is regulated by these mechanisms. Elucidating these connections might pose a chance to further understand autophagy induction and membrane biogenesis for the growing autophagosome under different conditions. Increasing our understanding of these mechanisms might provide a chance to understand several conditions that might be related to LD dysregulation and, possibly, as a consequence of this, dysregulation of autophagy.


Assuntos
Autofagia/fisiologia , Gotículas Lipídicas/metabolismo , Animais , Humanos , Lipólise/fisiologia , Saccharomyces cerevisiae/metabolismo
15.
Prog Mol Biol Transl Sci ; 177: 123-135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33453938

RESUMO

Alzheimer's disease (AD) is a complex disease of the brain. Despite over 100 years of basic and clinical research, significantly intensified in the last three decades, the exact cause of this neurodegeneration is still an enigma. Based on neuroanatomical, experimental, and clinical findings, a series of hypotheses on AD pathogenesis have evolved. Among them, the "amyloid cascade hypothesis" has been most prominent. Clinical efforts targeting the biochemistry of amyloid ß-protein (Aß) as causal therapy have all failed so far, which may mean that the pathogenic mechanism of AD is less straightforward than initially thought. While there was good scientific reason to support this hypothesis before, the exclusive concentration on it may have impeded a more objective look and prevented the pursuit of alternative approaches to decipher the cause of AD. Here, a few key hypotheses of AD are summarized, and it is proposed that our view of the cause (or causes) of this detrimental disease be widened. This includes looking back, reactivating, and revisiting findings that were ignored over the last decades. Alternative and amyloid-independent ways to explain AD pathogenesis should receive more attention and are appearing.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/terapia , Amiloide , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Humanos
16.
Cell Mol Life Sci ; 78(2): 645-660, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32322926

RESUMO

The cellular protein homeostasis (proteostasis) network responds effectively to insults. In a functional screen in C. elegans, we recently identified the gene receptor-mediated endocytosis 8 (rme-8; human ortholog: DNAJC13) as a component of the proteostasis network. Accumulation of aggregation-prone proteins, such as amyloid-ß 42 (Aß), α-synuclein, or mutant Cu/Zn-superoxide dismutase (SOD1), were aggravated upon the knockdown of rme-8/DNAJC13 in C. elegans and in human cell lines, respectively. DNAJC13 is involved in endosomal protein trafficking and associated with the retromer and the WASH complex. As both complexes have been linked to autophagy, we investigated the role of DNAJC13 in this degradative pathway. In knockdown and overexpression experiments, DNAJC13 acts as a positive modulator of autophagy. In contrast, the overexpression of the Parkinson's disease-associated mutant DNAJC13(N855S) did not enhance autophagy. Reduced DNAJC13 levels affected ATG9A localization at and its transport from the recycling endosome. As a consequence, ATG9A co-localization at LC3B-positive puncta under steady-state and autophagy-induced conditions is impaired. These data demonstrate a novel function of RME-8/DNAJC13 in cellular homeostasis by modulating ATG9A trafficking and autophagy.


Assuntos
Autofagia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Chaperonas Moleculares/metabolismo , Proteostase , Animais , Caenorhabditis elegans/citologia , Células HEK293 , Células HeLa , Humanos , Agregados Proteicos
17.
Int J Mol Sci ; 21(24)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322510

RESUMO

Autophagy (cellular self-consumption) is a crucial adaptation mechanism during cellular stress conditions. This study aimed to examine how this important process is regulated in human periodontal ligament (PDL) fibroblasts by mechanical and inflammatory stress conditions and whether the mammalian target of rapamycin (mTOR) signaling pathway is involved. Autophagy was quantified by flow cytometry. Qualitative protein phosphorylation profiling of the mTOR pathway was carried out. Effects of mTOR regulation were assessed by quantification of important synthesis product collagen 1, cell proliferation and cell death with real-time PCR and flow cytometry. Autophagy as a response to mechanical or inflammatory treatment in PDL fibroblasts was dose and time dependent. In general, autophagy was induced by stress stimulation. Phosphorylation analysis of mTOR showed regulatory influences of mechanical and inflammatory stimulation on crucial target proteins. Regulation of mTOR was also detectable via changes in protein synthesis and cell proliferation. Physiological pressure had cell-protective effects (p = 0.025), whereas overload increased cell death (p = 0.003), which was also promoted in long-term inflammatory treatment (p < 0.001). Our data provide novel insights about autophagy regulation by mechanical and inflammatory stress conditions in human PDL fibroblasts. Our results suggest some involvement of the mTOR pathway in autophagy and cell fate regulation under the named conditions.


Assuntos
Autofagia/fisiologia , Estresse Mecânico , Morte Celular/fisiologia , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Humanos , Inflamação/metabolismo , Inflamação/fisiopatologia , Transdução de Sinais/fisiologia
18.
Cells ; 9(11)2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158300

RESUMO

The multifunctional HSP70 co-chaperone BAG3 (BCL-2-associated athanogene 3) represents a key player in the quality control of the cellular proteostasis network. In response to stress, BAG3 specifically targets aggregation-prone proteins to the perinuclear aggresome and promotes their degradation via BAG3-mediated selective macroautophagy. To adapt cellular homeostasis to stress, BAG3 modulates and functions in various cellular processes and signaling pathways. Noteworthy, dysfunction and deregulation of BAG3 and its pathway are pathophysiologically linked to myopathies, cancer, and neurodegenerative disorders. Here, we report a BAG3 proteomic signature under proteostasis stress. To elucidate the dynamic and multifunctional action of BAG3 in response to stress, we established BAG3 interactomes under basal and proteostasis stress conditions by employing affinity purification combined with quantitative mass spectrometry. In addition to the identification of novel potential BAG3 interactors, we defined proteins whose interaction with BAG3 was altered upon stress. By functional annotation and protein-protein interaction enrichment analysis of the identified potential BAG3 interactors, we confirmed the multifunctionality of BAG3 and highlighted its crucial role in diverse cellular signaling pathways and processes, ensuring cellular proteostasis and cell viability. These include protein folding and degradation, gene expression, cytoskeleton dynamics (including cell cycle and transport), as well as granulostasis, in particular.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteômica , Proteostase , Estresse Fisiológico , Ontologia Genética , Células HEK293 , Humanos , Anotação de Sequência Molecular , Análise Multivariada , Inibidores de Proteassoma/farmacologia , Ligação Proteica/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteostase/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-yes/metabolismo , Estresse Fisiológico/efeitos dos fármacos
19.
Cells ; 9(10)2020 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-33081014

RESUMO

Macroautophagy is a conserved degradative process for maintaining cellular homeostasis and plays a key role in aging and various human disorders. The microtubule-associated protein 1A/1B light chain 3B (MAP1LC3B or LC3B) is commonly analyzed as a key marker for autophagosomes and as a proxy for autophagic flux. Three paralogues of the LC3 gene exist in humans: LC3A, LC3B and LC3C. The molecular function, regulation and cellular localization of LC3A and LC3C have not been investigated frequently, even if a similar function to that described for LC3B appears likely. Here, we have selectively decapacitated LC3B by three separate strategies in primary human fibroblasts and analyzed the evoked effects on LC3A, LC3B and LC3C in terms of their cellular distribution and co-localization with p62, a ubiquitin and autophagy receptor. First, treatment with pharmacological sirtuin 1 (SIRT1) inhibitors to prevent the translocation of LC3B from the nucleus into the cytosol induced an increase in cytosolic LC3C, a heightened co-localization of LC3C with p62, and an increase LC3C-dependent autophagic flux as assessed by protein lipidation. Cytosolic LC3A, however, was moderately reduced, but also more co-localized with p62. Second, siRNA-based knock-down of SIRT1 broadly reproduced these findings and increased the co-localization of LC3A and particularly LC3C with p62 in presumed autophagosomes. These effects resembled the effects of pharmacological sirtuin inhibition under normal and starvation conditions. Third, siRNA-based knock-down of total LC3B in cytosol and nucleus also induced a redistribution of LC3C as if to replace LC3B in the nucleus, but only moderately affected LC3A. Total protein expression of LC3A, LC3B, LC3C, GABARAP and GABARAP-L1 following LC3B decapacitation was unaltered. Our data indicate that nuclear trapping and other causes of LC3B functional loss in the cytosol are buffered by LC3A and actively compensated by LC3C, but not by GABARAPs. The biological relevance of the potential functional compensation of LC3B decapacitation by LC3C and LC3A warrants further study.


Assuntos
Autofagossomos/metabolismo , Fibroblastos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Sequência de Aminoácidos , Especificidade de Anticorpos/imunologia , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Sítios de Ligação , Linhagem Celular , Núcleo Celular/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Lipídeos/química , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Filogenia , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Sirtuínas/metabolismo , Frações Subcelulares/metabolismo
20.
Autophagy ; 16(7): 1348-1350, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32295467

RESUMO

The de novo synthesis of autophagic vesicles is strongly dependent on sufficient lipid supply. Recently, the RAB GTPase RAB18 was shown to affect autophagy by mediating fatty acid release from lipid droplets, which are lipid sources for autophagosome formation. The stable loss of RAB18 interfered with fatty acid release from the lipid reservoirs and provoked autophagy network adaptations aiming to maintain autophagic activity under lipid limiting conditions.


Assuntos
Adaptação Fisiológica , Autofagia , Lipídeos/química , Proteínas Relacionadas à Autofagia/metabolismo , Humanos , Gotículas Lipídicas/metabolismo , Modelos Biológicos , Proteínas rab de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...