Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(36): 32606-32614, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37720733

RESUMO

A fundamental understanding of aging processes in lithium-ion batteries (LIBs) is imperative in the development of future battery architectures for widespread electrification. Herein, dissolution of transition metals from cathode active materials of LIBs is among the most important degradation processes. Research has demonstrated that elevated operating temperatures accelerate battery degradation. However, the exact mechanism of transition-metal dissolution at elevated temperatures has still to be clarified. Current literature suggests that the reaction rate of dissolution increases with increasing temperature; moreover, the decomposition of electrolytes results in products that also accelerate dissolution processes. Most studies focus on ex situ analyses of thermally treated full cells. This approach is not appropriate to get detailed insights and to distinguish between different contributions. In this work, with the help of real-time dissolution analysis using an electroanalytical flow cell (EFC) coupled to an inductively coupled plasma mass spectrometer (ICP-MS), we present novel details of the temperature effects on in situ dissolution at the cathode electrolyte interface. With fresh electrolytes, we find increased Mn dissolution even at open-circuit conditions as well as with constant voltage polarization when the electrode sample is heated at constant temperatures between 50 and 80 °C. The release of transition metals also responds in a nuanced manner when applying temperature transients. Utilizing electrolytes preheated at 60 and 100 °C, we demonstrate that decomposition products in the bulk electrolyte have no influence on transition-metal (TM) dissolution when constantly flushing the cell with the thermally aged electrolyte samples. Only when keeping the cathode temperature at 60 °C, the dissolution increases by a factor of 2-3. Our findings highlight the interplay between the cathode and electrolyte and provide new insights into the dissolution mechanism of cathode materials.

2.
ACS Appl Mater Interfaces ; 13(28): 33075-33082, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34232020

RESUMO

The dissolution of transition metals (TMs) from cathode materials and their deposition on the anode represents a serious degradation process and, with that, a shortcoming of lithium-ion batteries. It occurs particularly at high charge voltages (>4.3 V), contributing to severe capacity loss and thus impeding the increase of cell voltage as a simple measure to increase energy density. We present here for the first time the online detection of dissolved TMs from a Ni-rich layered oxide cathode material with unprecedented potential and time resolution in potentiodynamic scans. To this aid, we used the coupling of an electroanalytical flow cell (EFC) with inductively coupled plasma mass spectrometry (ICP-MS), which is demonstrated to be an ideal tool for a fast performance assessment of new cathode materials from initial cycles. The simultaneous analysis of electrochemical and dissolution data allows hitherto hidden insights into the processes' characteristics and underlying mechanisms.

3.
ACS Omega ; 3(3): 2602-2608, 2018 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-29623302

RESUMO

Despite the growing need for readily available and inexpensive catalysts for the half-reactions involved in water splitting, water oxidation and reduction electrocatalysts are still traditionally based on noble metals. One long-standing challenge has been the development of an oxygen evolution reaction catalyzed by easily available, structurally simple, and purely organic compounds. Herein, we first generalize the performance of the known N-ethyl-flavinium ion to a number of derivatives. Furthermore, we demonstrate an unprecedented application of different pyridinium and related salts as very simple, inexpensive water oxidation organocatalysts consisting of earth-abundant elements (C, H, O, and N) exclusively. The results establish the prospects of heterocyclic aromatics for further design of new organic electrocatalysts for this challenging oxidation reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...