Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35008351

RESUMO

Inhibiting the activity of histone deacetylase (HDAC) is an ongoing strategy in anticancer therapy. However, to our knowledge, the relationships between the expression of HDAC proteins and the antitumor drug sensitivity of cancer cells have not been studied until now. In the current work, we investigated the relative expression profiles of 10 HDAC isoenzymes comprising the classes I-III (HDAC1/2/4/6; Sirt1/2/3/5/6/7) in a panel of 17 cancer cell lines, including the breast, cervix, oesophageal, lung, oral squamous, pancreas, as well as urinary bladder carcinoma cells. Correlations between the data of mRNA expression for these enzymes obtained from the National Cancer Institute (NCI) 60 cancer cell line program were also examined. Next, we performed univariate analysis between the expression patterns of HDAC/Sirt isoenzymes with the sensitivity of a 16 cell panel of cancer cell lines towards several antitumor drugs. In a univariate correlation analysis, we found a strong relation between Sirt2 expression and cytotoxicity caused by busulfan, etoposide, and hydroxyurea. Moreover, it was identified that Sirt5 correlates with the effects exerted by oxaliplatin or topotecan, as well as between HDAC4 expression and these two drugs. Correlations between the data of mRNA expression for enzymes with the potencies of the same anticancer agents obtained from the NCI 60 cancer cell line program were also found, but none were the same as those we found with our protein expression data. Additionally, we report here the effects upon combination of the approved HDAC inhibitor vorinostat and one other known inhibitor trichostatin A as well as newer hetero-stilbene and diazeno based sirtuin inhibitors on the potency of cisplatin, lomustine, and topotecan. For these three anticancer drugs, we found a significantly enhanced cytotoxicity when co-incubated with HDAC inhibitors, demonstrating a potentially beneficial influence of HDAC inhibition on anticancer drug treatment.

2.
Antioxidants (Basel) ; 9(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353055

RESUMO

The role of glutathione peroxidases (GPx) in cancer and their influence on tumor prognosis and the development of anticancer drug resistance has been extensively and controversially discussed. The aim of this study was to evaluate the influence of GPx1 expression on anticancer drug cytotoxicity. For this purpose, a GPx1 knockout of the near-haploid human cancer cell line HAP-1 was generated and compared to the native cell line with regards to morphology, growth and metabolic rates, and oxidative stress defenses. Furthermore, the IC50 values of two peroxides and 16 widely used anticancer drugs were determined in both cell lines. Here we report that the knockout of GPx1 in HAP-1 cells has no significant effect on cell size, viability, growth and metabolic rates. Significant increases in the cytotoxic potency of hydrogen peroxide and tert-butylhydroperoxide, the anticancer drugs cisplatin and carboplatin as well as the alkylating agents lomustine and temozolomide were found. While a concentration dependent increases in intracellular reactive oxygen species (ROS) levels were observed for both HAP-1 cell lines treated with either cisplatin, lomustine or temozolamide, no significant enhancement in ROS levels was observed in the GPx1 knockout compared to the native cell line except at the highest concentration of temozolamide. On the other hand, a ca. 50% decrease in glutathione levels was noted in the GPx1 knockout relative to the native line, suggesting that factors other than ROS levels alone play a role in the increased cytotoxic activity of these drugs in the GPx1 knockout cells.

3.
ChemMedChem ; 15(15): 1480-1489, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32314517

RESUMO

Because isoenzymes of the experimentally and therapeutically extremely relevant sirtuin family show high similarity, addressing the unique selectivity pocket of sirtuin 2 is a promising strategy towards selective inhibitors. An unrelated approach towards selective inhibition of isoenzymes with varied tissue distribution is targeted drug delivery or spatiotemporal activation by photochemical activation. Azologization of two nicotinamide-mimicking lead structures was undertaken to combine both approaches and yielded a set of 33 azobenzenes and azopyridines that have been evaluated for their photochemical behaviour and bioactivity. For some compounds, inhibitory activity reached the sub-micromolar range in their thermodynamically favoured E form and could be decreased by photoisomerization to the metastable Z form. Besides, derivatization with long-chain fatty acids yielded potent sirtuin 2 inhibitors, featuring another intriguing aspect of azo-based photoswitches. In these compounds, switching to the Z isomer increased aqueous solubility and thereby enhanced biological activity by up to a factor of 21. The biological activity of two compounds was confirmed by hyperacetylation of sirtuin specific histone proteins in a cell-based activity assay.


Assuntos
Compostos Azo/farmacologia , Inibidores Enzimáticos/farmacologia , Piridinas/farmacologia , Sirtuína 2/antagonistas & inibidores , Compostos Azo/síntese química , Compostos Azo/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Processos Fotoquímicos , Piridinas/síntese química , Piridinas/química , Sirtuína 2/metabolismo , Solubilidade , Relação Estrutura-Atividade , Água/química
4.
ChemMedChem ; 15(16): 1515-1528, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32311219

RESUMO

A novel class of glutathione peroxidase 1 (GPx1) inhibitors, namely tri- and tetracyclic pentathiepins, has been identified that is approximately 15 times more potent than the most active known GPx1 inhibitor, mercaptosuccinic acid. Enzyme kinetic studies with bovine erythrocyte GPx1 indicate that pentathiepins reversibly inhibit oxidation of the substrate glutathione (GSH). Moreover, no inhibition of superoxide dismutase, catalase, thioredoxin reductase or glutathione reductase was observed at concentrations that effectively inhibit GPx1. As well as potent enzyme inhibitory activity, the pentathiepins show strong anticancer activity in various human cancer cell lines, with IC50 values in a low-micromolar range. A representative tetracyclic pentathiepin causes the formation of reactive oxygen species in these cells, the fragmentation of nuclear DNA and induces apoptosis via the intrinsic pathway. Moreover, this pentathiepin leads to a rapid and strong loss of mitochondrial membrane potential in treated cancer cells. On the other hand, evidence for the induction of ferroptosis as a form of cell death was negative. These new findings show that pentathiepins possess interesting biological activities beyond those originally ascribed to these compounds.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Glutationa Peroxidase/antagonistas & inibidores , Compostos Heterocíclicos/farmacologia , Sulfetos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glutationa Peroxidase/metabolismo , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Relação Estrutura-Atividade , Sulfetos/síntese química , Sulfetos/química , Células Tumorais Cultivadas , Glutationa Peroxidase GPX1
5.
Molecules ; 25(4)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075139

RESUMO

In western Africa ethnomedicine, Lannea barteri Oliv. (Anacardiaceae) is believed to have activity against gastrointestinal, neurological and endocrine diseases. Previous studies on this plant have revealed antimicrobial, anticholinestrase, anticonvulsant, antioxidant and anti-inflammatory activities. However, the anticancer potential of L. barteri has not been studied to date. The aim of this study was to evaluate the anticancer potential of hot and cold extracts and silica gel column chromatographic fractions of L. barteri leaf and stem bark. The extracts and fractions were tested for anticancer activity by using the crystal violet cell proliferation assay on four adherent human carcinoma cell lines-5637 (bladder), KYSE 70 (oesophagus), SiSo (cervical) and HepG2 (hepatic). The inhibitory concentration (IC50) of fractions IH, 1I, 2E and 2F were: 3.75 ± 1.33, 3.88 ± 2.15, 0.53 ± 0.41, and 0.42 ± 0.45 µg/mL against KYSE 70 and 1.04 ± 0.94, 2.69 ± 1.17, 2.38 ± 3.64, 2.17 ± 1.92 µg/mL against SiSo cell lines respectively. Fraction 2E showed weak apoptotic activity at double the IC50 and some sign of cell cycle arrest in the G2/M phase. Thus, phytoconstituents of L. barteri leaf and stem bark can inhibit the proliferation of cancer cell lines indicating the presence of possible anticancer agents in this plant.


Assuntos
Anacardiaceae/química , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Extratos Vegetais/farmacologia , Antineoplásicos/química , Antioxidantes/química , Antioxidantes/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias/patologia , Casca de Planta/química , Extratos Vegetais/química , Folhas de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...