Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1898): 20220508, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38310940

RESUMO

As humans alter landscapes worldwide, land and wildlife managers need reliable tools to assess and monitor responses of wildlife populations. Glucocorticoid (GC) hormone levels are one common physiological metric used to quantify how populations are coping in the context of their environments. Understanding whether GC levels can reflect broad landscape characteristics, using data that are free and commonplace to diverse stakeholders, is an important step towards physiological biomarkers having practical application in management and conservation. We conducted a phylogenetic comparative analysis using publicly available datasets to test the efficacy of GCs as a biomarker for large spatial-scale avian population monitoring. We used hormone data from HormoneBase (51 species), natural history information and US national land cover data to determine if baseline or stress-induced corticosterone varies with the amount of usable land cover types within each species' home range. We found that stress-induced levels, but not baseline, positively correlated with per cent usable land cover both within and across species. Our results indicate that GC concentrations may be a useful biomarker for characterizing populations across a range of habitat availability, and we advocate for more physiological studies on non-traditional species in less studied populations to build on this framework. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.


Assuntos
Ecossistema , Glucocorticoides , Animais , Humanos , Filogenia , Animais Selvagens , Aves/fisiologia , Biomarcadores , Conservação dos Recursos Naturais , Biodiversidade
2.
Ecol Evol ; 12(9): e9325, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36188508

RESUMO

Non-native ungulate grazing has negatively impacted native species across the globe, leading to massive loss of biodiversity and ecosystem services. Despite their pervasiveness, interactions between non-native grazers and native species are not fully understood. We often observe declines in demography or survival of these native species, but lack understanding about the mechanisms underlying these declines. Physiological stress represents one mechanism of (mal)adaptation, but data are sparse. We investigated glucocorticoid levels in a native avian herbivore exposed to different intensities of non-native grazing in the cold desert Great Basin ecosystem, USA. We measured corticosterone, a glucocorticoid in feathers for a large sample (n = 280) of female greater sage-grouse (Centrocercus urophasianus) from three study areas in Northern Nevada and Southern Oregon with different grazing regimes of livestock and feral horses. We found that greater feral horse density was associated with higher corticosterone levels, and this effect was exacerbated by drought conditions. Livestock grazing produced similar results; however, there was more model uncertainty about the livestock effect. Subsequent nesting success was lower with increased feather corticosterone, but corticosterone levels were not predictive of other vital rates. Our results indicate a physiological response by sage-grouse to grazing pressure from non-native grazers. We found substantial among-individual variation in the strength of the response. These adverse effects were intensified during unfavorable weather events, highlighting the need to reevaluate management strategies in the face of climate change.

3.
Ecol Evol ; 12(6): e9005, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35784036

RESUMO

Population growth and fitness are typically most sensitive to adult survival in long-lived species, but variation in recruitment often explains most of the variation in fitness, as past selection has canalized adult survival. Estimating juvenile survival until age of independence has proven challenging, because marking individuals in this age class may directly affect survival. For Greater Sage-grouse, uniquely marking juveniles in the first days of life likely results in adverse effects to survival, detection of juveniles is not perfect, and females adopt juveniles from other parents. These challenges are encountered by researchers studying avian and mammalian species with similar life histories, yet methods do not exist that explicitly estimate all these components of the recruitment process. We propose a novel data collection method and demographic model to simultaneously estimate rates of detection, survival, and adoption of juvenile individuals. Using multiple cameras to film the beginning of juvenile activity on specific days, we obtained counts of juveniles associated with marked females. Increases of juveniles to broods provided information that enabled us to estimate rates of adoption that can be applied at the population level. Losses from broods informed apparent survival. These losses could be attributed to death, or they could be chicks that were adopted by other females. We found evidence that apparent survival of juveniles was influenced by localized weather patterns when chicks were young. Similarly, we found that young chicks were more susceptible to the adverse effect of attending females being flushed by an observer. Both of these patterns diminished quickly as chicks aged. We provide the first-ever estimates of interval-specific adoption rates. Our results suggest that researchers should be cautious when designing studies to estimate juvenile survival. More importantly, they provide insight into adoption, a behavior that has been known to exist for decades.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...