Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(8): 4730-4735, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795018

RESUMO

CO2 activation is an integral component of thermocatalytic and electrocatalytic CO2 conversion to liquid fuels and value-added chemicals. However, the thermodynamic stability of CO2 and the high kinetic barriers to activating CO2 are significant bottlenecks. In this work, we propose that dual atom alloys (DAAs), homo- and heterodimer islands in a Cu matrix, can offer stronger covalent CO2 binding than pristine Cu. The active site is designed to mimic the Ni-Fe anaerobic carbon monoxide dehydrogenase CO2 activation environment in a heterogeneous catalyst. We find that combinations of early transition metals (TMs) and late TMs embedded in Cu are thermodynamically stable and can offer stronger covalent CO2 binding than Cu. Additionally, we identify DAAs that have CO binding energies similar to Cu, both to avoid surface poisoning and to ensure attainable CO diffusion to Cu sites so that the C-C bond formation ability of Cu can be retained in conjunction with facile CO2 activation at the DAA sites. Machine learning feature selection reveals that the more electropositive dopants are primarily responsible for attaining the strong CO2 binding. We propose seven Cu-based DAAs and two single atom alloys (SAAs) with early TM late TM combinations, (Sc, Ag), (Y, Ag), (Y, Fe), (Y, Ru), (Y, Cd), (Y, Au), (V, Ag), (Sc), and (Y), for facile CO2 activation.

2.
J Phys Chem A ; 122(46): 9001-9013, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30373368

RESUMO

Photolysis of the diazine heterocycle, pyrazine, following irradiation at 308, 248, and 193 nm was examined using nanosecond time-resolved Fourier transform infrared emission spectroscopy. The resulting time-resolved IR emission spectra reveal that for 308 and 248 nm vibrationally highly excited pyrazine is produced, but no photolysis products were detected. However, at 193 nm excitation, the measured IR emission spectra consist solely of resonances originating from rovibrationally excited photofragments, including acetylene (HCCH), hydrogen cyanide (HCN), and hydrogen isocyanide (HNC), indicating that photofragmentation proceeds from vibrationally highly excited pyrazine on the ground electronic state. Spectral fit analysis of the time-resolved HCN and HNC IR emission band shapes and intensities allowed an estimate of the nascent product population distributions, from which a lower bound estimate of the HNC/HCN branching ratio was deduced as Φ ≥ 0.07. Additionally, ab initio calculations were performed in order to examine the propensity of photoinduced reactions on the ground- and lowest-energy excited-state surfaces. The calculations provide a basis for understanding the wavelength dependence of the UV photolysis of pyrazine, the photolytic production of HNC, and also explain previous experimental observations in the literature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...