Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Dev Ind Pharm ; 47(10): 1643-1655, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35232324

RESUMO

The objective of this experimental study is to analyze non-viable and viable particle loads in a pharmaceutical cleanroom under 'in operation' conditions using different air change rates (ACRs). Regulatory guidelines give limit values for particles/m3 and colony forming units (CFUs)/m3. A widely used ACR is 20 h-1 as this value is recommended by the Food and Drug Administration (FDA) in its guidance for industry on sterile drug products. However, this value may be too high, resulting in increased costs for energy. A typical pharmaceutical cleanroom was used for this study, and operations were simulated with a process unit and two operators in the room. The experiments were conducted twice with four different ACRs and four different types of operator garments, resulting in 32 trials in total. Particle load and CFUs were measured by calibrated particle counters and microbial air samplers. The results give evidence that an ACR of 20 h-1 is not required. ACR 10 h-1 is sufficient without compromising the demanded air quality. Furthermore, it was found that regulatory agencies should reevaluate the expected limits as these currently give a high buffer between the required and actual values, which potentially cover up problems in aseptic manufacturing.


Assuntos
Ambiente Controlado , Preparações Farmacêuticas , Estados Unidos , United States Food and Drug Administration
2.
Life Sci ; 77(2): 205-19, 2005 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-15862605

RESUMO

Biotransformation involving nitrogen are of pharmacological and toxicological relevance. In principle, nitrogen containing functional groups can undergo all the known biotransformation processes such as oxidation, reduction, hydrolysis and formation of conjugates. For the N-reduction of benzamidoxime an oxygen-insensitive liver microsomal enzyme system that required cytochrome b5, NADH-cytochrome b5 reductase and a cytochrome P450 isoenzyme of the subfamily 2D has been described. In previous studies it was demonstrated that N-hydroxylated derivates of strongly basic functional groups are easily reduced by this enzyme system. The N-hydroxylation of sulfonamides such sulfamethoxazole (SMX) and dapsone (DDS) to sulfamethoxazole-hydroxylamine (SMX-HA) and dapsone-hydroxylamine (DDS-N-OH), respectively is the first step in the formation of reactive metabolites. Therefore it seemed reasonable to study the potential of cytochrome b5, NADH-cytochrome b5 reductase and CYP2D to detoxify these N-hydroxylated metabolites by N-reduction. Metabolites were analysed by HPLC analysis. SMX-HA and DDS-N-OH are reduced by cytochrome b5, NADH-cytochrome b5 reductase and CYP2D but also only by cytochrome b5 and NADH-cytochrome b5 reductase without addition of CYP2D. The reduction rate for SMX-HA by cytochrome b5, NADH-cytochrome b5 reductase and CYP2D was 0,65 +/- 0,1 nmol SMX/min/mg protein. The reduction rate by b5 and b5 reductase was 0,37 +/- 0,15 nmol SMX/min/mg protein. For DDS-N-OH the reduction rate by cytochrome b5, NADH-cytochrome b5 reductase and CYP2D was 1.79 +/- 0.85 nmol DDS/min/mg protein and by cytochrome b5 and NADH-cytochrome b5 reductase 1.25 +/- 0.15 nmol DDS/min/mg protein. Cytochrome b5, NADH-cytochrome b5 reductase are therefore involved in the detoxification of these reactive hydroxylamines and CYP2D increased the N-reduction.


Assuntos
Sistema Enzimático do Citocromo P-450/fisiologia , Citocromo-B(5) Redutase/fisiologia , Citocromos b5/fisiologia , Dapsona/análogos & derivados , Dapsona/metabolismo , Microssomos Hepáticos/enzimologia , Sulfametoxazol/análogos & derivados , Sulfametoxazol/metabolismo , Animais , Humanos , Concentração de Íons de Hidrogênio , Oxirredução , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...