Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 19(10): 1280-5, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27669988

RESUMO

Dorsal anterior cingulate cortex (dACC) carries a wealth of value-related information necessary for regulating behavioral flexibility and persistence. It signals error and reward events informing decisions about switching or staying with current behavior. During decision-making, it encodes the average value of exploring alternative choices (search value), even after controlling for response selection difficulty, and during learning, it encodes the degree to which internal models of the environment and current task must be updated. dACC value signals are derived in part from the history of recent reward integrated simultaneously over multiple time scales, thereby enabling comparison of experience over the recent and extended past. Such ACC signals may instigate attentionally demanding and difficult processes such as behavioral change via interactions with prefrontal cortex. However, the signal in dACC that instigates behavioral change need not itself be a conflict or difficulty signal.


Assuntos
Tomada de Decisões/fisiologia , Giro do Cíngulo/fisiologia , Recompensa , Animais , Atenção/fisiologia , Comportamento de Escolha/fisiologia , Humanos , Aprendizagem/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia
2.
Neuron ; 89(6): 1343-1354, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26948895

RESUMO

Complex cognitive processes require sophisticated local processing but also interactions between distant brain regions. It is therefore critical to be able to study distant interactions between local computations and the neural representations they act on. Here we report two anatomically and computationally distinct learning signals in lateral orbitofrontal cortex (lOFC) and the dopaminergic ventral midbrain (VM) that predict trial-by-trial changes to a basic internal model in hippocampus. To measure local computations during learning and their interaction with neural representations, we coupled computational fMRI with trial-by-trial fMRI suppression. We find that suppression in a medial temporal lobe network changes trial-by-trial in proportion to stimulus-outcome associations. During interleaved choice trials, we identify learning signals that relate to outcome type in lOFC and to reward value in VM. These intervening choice feedback signals predicted the subsequent change to hippocampal suppression, suggesting a convergence of signals that update the flexible representation of stimulus-outcome associations.


Assuntos
Hipocampo/fisiologia , Aprendizagem/fisiologia , Córtex Pré-Frontal/fisiologia , Adulto , Mapeamento Encefálico , Comportamento de Escolha , Simulação por Computador , Retroalimentação , Feminino , Lateralidade Funcional , Voluntários Saudáveis , Hipocampo/irrigação sanguínea , Humanos , Modelos Lineares , Masculino , Mesencéfalo/irrigação sanguínea , Mesencéfalo/fisiologia , Modelos Biológicos , Vias Neurais/irrigação sanguínea , Vias Neurais/fisiologia , Oxigênio/sangue , Estimulação Luminosa , Valor Preditivo dos Testes , Córtex Pré-Frontal/irrigação sanguínea , Adulto Jovem
3.
Neuroimage ; 100: 498-506, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24941453

RESUMO

Two long-standing traditions have highlighted cortical decision mechanisms in the parietal and prefrontal cortices of primates, but it has not been clear how these processes differ, or when each cortical region may influence behaviour. Recent data from ventromedial prefrontal cortex (vmPFC) and posterior parietal cortex (PPC) have suggested one possible axis on which the two decision processes might be delineated. Fast decisions may be resolved primarily by parietal mechanisms, whereas decisions made without time pressure may rely on prefrontal mechanisms. Here, we report direct evidence for such dissociation. During decisions under time pressure, a value comparison process was evident in PPC, but not in vmPFC. Value-related activity was still found in vmPFC under time pressure. However, vmPFC represented overall input value rather than compared output value. In contrast, when decisions were made without time pressure, vmPFC transitioned to encode a value comparison while value-related parameters were entirely absent from PPC. Furthermore, under time pressure, decision performance was primarily governed by PPC, while it was dominated by vmPFC at longer decision times. These data demonstrate that parallel cortical mechanisms may resolve the same choices in differing circumstances, and offer an explanation of the diverse neural signals reported in vmPFC and PPC during value-guided choice.


Assuntos
Mapeamento Encefálico/métodos , Comportamento de Escolha/fisiologia , Lobo Parietal/fisiologia , Córtex Pré-Frontal/fisiologia , Recompensa , Adolescente , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
4.
Psychol Sci ; 25(7): 1303-13, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24815611

RESUMO

How do people sustain resources for the benefit of individuals and communities and avoid the tragedy of the commons, in which shared resources become exhausted? In the present study, we examined the role of serotonin activity and social norms in the management of depletable resources. Healthy adults, alongside social partners, completed a multiplayer resource-dilemma game in which they repeatedly harvested from a partially replenishable monetary resource. Dietary tryptophan depletion, leading to reduced serotonin activity, was associated with aggressive harvesting strategies and disrupted use of the social norms given by distributions of other players' harvests. Tryptophan-depleted participants more frequently exhausted the resource completely and also accumulated fewer rewards than participants who were not tryptophan depleted. Our findings show that rank-based social comparisons are crucial to the management of depletable resources, and that serotonin mediates responses to social norms.


Assuntos
Serotonina/fisiologia , Comportamento Social , Normas Sociais , Triptofano/fisiologia , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Análise de Regressão , Recompensa , Autorrelato , Triptofano/administração & dosagem , Adulto Jovem
5.
Neuroimage ; 80: 273-82, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23727318

RESUMO

In recent years, diffusion MRI has become an extremely important tool for studying the morphology of living brain tissue, as it provides unique insights into both its macrostructure and microstructure. Recent applications of diffusion MRI aimed to characterize the structural connectome using tractography to infer connectivity between brain regions. In parallel to the development of tractography, additional diffusion MRI based frameworks (CHARMED, AxCaliber, ActiveAx) were developed enabling the extraction of a multitude of micro-structural parameters (axon diameter distribution, mean axonal diameter and axonal density). This unique insight into both tissue microstructure and connectivity has enormous potential value in understanding the structure and organization of the brain as well as providing unique insights to abnormalities that underpin disease states. The CONNECT (Consortium Of Neuroimagers for the Non-invasive Exploration of brain Connectivity and Tracts) project aimed to combine tractography and micro-structural measures of the living human brain in order to obtain a better estimate of the connectome, while also striving to extend validation of these measurements. This paper summarizes the project and describes the perspective of using micro-structural measures to study the connectome.


Assuntos
Encéfalo/citologia , Encéfalo/fisiologia , Conectoma/métodos , Imagem de Tensor de Difusão/métodos , Aumento da Imagem/métodos , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Humanos , Modelos Anatômicos , Modelos Neurológicos
6.
J Neurosci ; 33(6): 2242-53, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23392656

RESUMO

Although damage to the medial frontal cortex causes profound decision-making impairments, it has been difficult to pinpoint the relative contributions of key anatomical subdivisions. Here we use function magnetic resonance imaging to examine the contributions of human ventromedial prefrontal cortex (vmPFC) and dorsal anterior cingulate cortex (dACC) during sequential choices between multiple alternatives--two key features of choices made in ecological settings. By carefully constructing options whose current value at any given decision was dissociable from their longer term value, we were able to examine choices in current and long-term frames of reference. We present evidence showing that activity at choice and feedback in vmPFC and dACC was tied to the current choice and the best long-term option, respectively. vmPFC, mid-cingulate, and posterior cingulate cortex encoded the relative value between the chosen and next best option at each sequential decision, whereas dACC encoded the relative value of adapting choices from the option with the highest value in the longer term. Furthermore, at feedback we identify temporally dissociable effects that predict repetition of the current choice and adaptation away from the long-term best option in vmPFC and dACC, respectively. These functional dissociations at choice and feedback suggest that sequential choices are subject to competing cortical mechanisms.


Assuntos
Comportamento de Escolha/fisiologia , Giro do Cíngulo/fisiologia , Córtex Pré-Frontal/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Vias Neurais/fisiologia , Estimulação Luminosa/métodos , Adulto Jovem
7.
J Neurosci ; 27(14): 3743-52, 2007 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-17409238

RESUMO

The ability to stop motor responses depends critically on the right inferior frontal cortex (IFC) and also engages a midbrain region consistent with the subthalamic nucleus (STN). Here we used diffusion-weighted imaging (DWI) tractography to show that the IFC and the STN region are connected via a white matter tract, which could underlie a "hyperdirect" pathway for basal ganglia control. Using a novel method of "triangulation" analysis of tractography data, we also found that both the IFC and the STN region are connected with the presupplementary motor area (preSMA). We hypothesized that the preSMA could play a conflict detection/resolution role within a network between the preSMA, the IFC, and the STN region. A second experiment tested this idea with functional magnetic resonance imaging (fMRI) using a conditional stop-signal paradigm, enabling examination of behavioral and neural signatures of conflict-induced slowing. The preSMA, IFC, and STN region were significantly activated the greater the conflict-induced slowing. Activation corresponded strongly with spatial foci predicted by the DWI tract analysis, as well as with foci activated by complete response inhibition. The results illustrate how tractography can reveal connections that are verifiable with fMRI. The results also demonstrate a three-way functional-anatomical network in the right hemisphere that could either brake or completely stop responses.


Assuntos
Cognição/fisiologia , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Masculino , Estimulação Luminosa/métodos , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...