Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Pathol Res Pract ; 251: 154849, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37837858

RESUMO

AMP-activated protein kinase (AMPK) signaling has a versatile role in Osteosarcoma (OS), an aggressive bone malignancy with a poor prognosis, particularly in cases that have metastasized or recurred. This review explores the regulatory mechanisms, functional roles, and therapeutic applications of AMPK signaling in OS. It focuses on the molecular activation of AMPK and its interactions with cellular processes like proliferation, apoptosis, and metabolism. The uncertain role of AMPK in cancer is also discussed, highlighting its potential as both a tumor suppressor and a contributor to carcinogenesis. The therapeutic potential of targeting AMPK signaling in OS treatment is examined, including direct and indirect activators like metformin, A-769662, resveratrol, and salicylate. Further research is needed to determine dosing, toxicities, and molecular mechanisms responsible for the anti-osteosarcoma effects of these compounds. This review underscores the complex involvement of AMPK signaling in OS and emphasizes the need for a comprehensive understanding of its molecular mechanisms. By elucidating the role of AMPK in OS, the aim is to pave the way for innovative therapeutic approaches that target this pathway, ultimately improving the prognosis and quality of life for OS patients.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias Ósseas/metabolismo , Carcinogênese , Carcinógenos , Recidiva Local de Neoplasia , Osteossarcoma/metabolismo , Qualidade de Vida
2.
Cell Signal ; 109: 110786, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37380085

RESUMO

Understanding the exact pathogenesis of cancer is difficult due to heterogenous nature of tumor cells and multiple factors that cause its initiation and development. Treatment of cancer is mainly based on surgical resection, chemotherapy, radiotherapy and their combination, while gene therapy has been emerged as a new kind of therapy for cancer. Post-transcriptional regulation of genes has been of interest in recent years and among various types of epigenetic factors that can modulate gene expression, short non-coding RNAs known as microRNAs (miRNAs) have obtained much attention. The stability of mRNA decreases by miRNAs to repress gene expression. miRNAs can regulate tumor malignancy and biological behavior of cancer cells and understanding their function in tumorigenesis can pave the way towards developing new therapeutics in future. One of the new emerging miRNAs in cancer therapy is miR-218 that increasing evidence highlights its anti-cancer activity, while a few studies demonstrate its oncogenic function. The miR-218 transfection is promising in reducing progression of tumor cells. miR-218 shows interactions with molecular mechanisms including apoptosis, autophagy, glycolysis and EMT, and the interaction is different. miR-218 induces apoptosis, while it suppresses glycolysis, cytoprotective autophagy and EMT. Low expression of miR-218 can result in development of chemoresistance and radio-resistance in tumor cells and direct targeting of miR-218 as a key player is promising in cancer therapy. LncRNAs and circRNAs are nonprotein coding transcripts that can regulate miR-218 expression in human cancers. Moreover, low expression level of miR-218 can be observed in human cancers such as brain, gastrointestinal and urological cancers that mediate poor prognosis and low survival rate.


Assuntos
MicroRNAs , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Transformação Celular Neoplásica/genética , Carcinogênese/genética , Apoptose/genética , Regulação Neoplásica da Expressão Gênica
3.
Eur J Pharmacol ; 951: 175781, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37179043

RESUMO

Non-coding RNA transcripts are RNA molecules that have mainly regulatory functions and they do not encode proteins. microRNAs (miRNAs), lncRNAs and circRNAs are major types of this family and these epigenetic factors participate in disease pathogenesis, especially cancer that their abnormal expression may lead to cancer progression. miRNAs and lncRNAs possess a linear structure, whereas circRNAs possess ring structures and high stability. Wnt/ß-catenin is an important factor in cancer with oncogenic function and it can increase growth, invasion and therapy resistance in tumors. Wnt upregulation occurs upon transfer of ß-catenin to nucleus. Interaction of ncRNAs with Wnt/ß-catenin signaling can determine tumorigenesis. Wnt upregulation is observed in cancers and miRNAs are able to bind to 3'-UTR of Wnt to reduce its level. LncRNAs can directly/indirectly regulate Wnt and in indirect manner, lncRNAs sponge miRNAs. CircRNAs are new emerging regulators of Wnt and by its stimulation, they increase tumor progression. CircRNA/miRNA axis can affect Wnt and carcinogenesis. Overall, interaction of ncRNAs with Wnt can determine proliferation rate, migration ability and therapy response of cancers. Furthermore, ncRNA/Wnt/ß-catenin axis can be utilized as biomarker in cancer and for prognostic applications in patients.


Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Circular/genética , beta Catenina/genética , beta Catenina/metabolismo , RNA não Traduzido/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/terapia , Via de Sinalização Wnt/genética , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proliferação de Células/genética
4.
Clin. transl. oncol. (Print) ; 25(5): 1167-1188, mayo 2023.
Artigo em Inglês | IBECS | ID: ibc-219505

RESUMO

Recently, nucleic acid drugs have been considered as promising candidates in treatment of various diseases, especially cancer. Because of developing resistance to conventional chemotherapy, use of genetic tools in cancer therapy appears inevitable. siRNA is a RNAi tool with capacity of suppressing target gene. Owing to overexpression of oncogenic factors in cancer, siRNA can be used for suppressing those pathways. This review emphasizes the function of siRNA in treatment of breast tumor. The anti-apoptotic-related genes including Bcl-2, Bcl-xL and survivin can be down-regulated by siRNA in triggering cell death in breast cancer. STAT3, STAT8, Notch1, E2F3 and NF-κB are among the factors with overexpression in breast cancer that their silencing by siRNA paves the way for impairing tumor proliferation and invasion. The oncogenic mechanisms in drug resistance development in breast tumor such as lncRNAs can be suppressed by siRNA. Furthermore, siRNA reducing P-gp activity can increase drug internalization in tumor cells. Because of siRNA degradation at bloodstream and low accumulation at tumor site, nanoplatforms have been employed for siRNA delivery to suppress breast tumor progression via improving siRNA efficacy in gene silencing. Development of biocompatible and efficient nanostructures for siRNA delivery can make milestone progress in alleviation of breast cancer patients (AU)


Assuntos
Humanos , Neoplasias da Mama/terapia , RNA Interferente Pequeno , Nanopartículas , Sistemas de Liberação de Medicamentos
5.
Cell Mol Biol Lett ; 28(1): 33, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085753

RESUMO

Hepatocellular carcinoma (HCC) is considered one of the greatest challenges to human life and is the most common form of liver cancer. Treatment of HCC depends on chemotherapy, radiotherapy, surgery, and immunotherapy, all of which have their own drawbacks, and patients may develop resistance to these therapies due to the aggressive behavior of HCC cells. New and effective therapies for HCC can be developed by targeting molecular signaling pathways. The expression of signal transducer and activator of transcription 3 (STAT3) in human cancer cells changes, and during cancer progression, the expression tends to increase. After induction of STAT3 signaling by growth factors and cytokines, STAT3 is phosphorylated and translocated to the nucleus to regulate cancer progression. The concept of the current review revolves around the expression and phosphorylation status of STAT3 in HCC, and studies show that the expression of STAT3 is high during the progression of HCC. This review addresses the function of STAT3 as an oncogenic factor in HCC, as STAT3 is able to prevent apoptosis and thus promote the progression of HCC. Moreover, STAT3 regulates both survival- and death-inducing autophagy in HCC and promotes cancer metastasis by inducing the epithelial-mesenchymal transition (EMT). In addition, upregulation of STAT3 is associated with the occurrence of chemoresistance and radioresistance in HCC. Specifically, non-protein-coding transcripts regulate STAT3 signaling in HCC, and their inhibition by antitumor agents may affect tumor progression. In this review, all these topics are discussed in detail to provide further insight into the role of STAT3 in tumorigenesis, treatment resistance, and pharmacological regulation of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Fator de Transcrição STAT3 , Humanos , Carcinogênese/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fator de Transcrição STAT3/metabolismo
6.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166714, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37028606

RESUMO

Western lifestyle contributes to an overt increase in the prevalence of metabolic anomalies including diabetes mellitus (DM) and obesity. Prevalence of DM is rapidly growing worldwide, affecting many individuals in both developing and developed countries. DM is correlated with the onset and development of complications with diabetic nephropathy (DN), diabetic cardiomyopathy (DC) and diabetic neuropathy being the most devastating pathological events. On the other hand, Nrf2 is a regulator for redox balance in cells and accounts for activation of antioxidant enzymes. Dysregulation of Nrf2 signaling has been shown in various human diseases such as DM. This review focuses on the role Nrf2 signaling in major diabetic complications and targeting Nrf2 for treatment of this disease. These three complications share similarities including the presence of oxidative stress, inflammation and fibrosis. Onset and development of fibrosis impairs organ function, while oxidative stress and inflammation can evoke damage to cells. Activation of Nrf2 signaling significantly dampens inflammation and oxidative damage, and is beneficial in retarding interstitial fibrosis in diabetic complications. SIRT1 and AMPK are among the predominant pathways to upregulate Nrf2 expression in the amelioration of DN, DC and diabetic neuropathy. Moreover, certain therapeutic agents such as resveratrol and curcumin, among others, have been employed in promoting Nrf2 expression to upregulate HO-1 and other antioxidant enzymes in the combat of oxidative stress in the face of DM.


Assuntos
Cardiomiopatias , Complicações do Diabetes , Diabetes Mellitus , Nefropatias Diabéticas , Neuropatias Diabéticas , Humanos , Nefropatias Diabéticas/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/uso terapêutico , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/genética , Fibrose , Inflamação
7.
Clin Transl Oncol ; 25(5): 1167-1188, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36562927

RESUMO

Recently, nucleic acid drugs have been considered as promising candidates in treatment of various diseases, especially cancer. Because of developing resistance to conventional chemotherapy, use of genetic tools in cancer therapy appears inevitable. siRNA is a RNAi tool with capacity of suppressing target gene. Owing to overexpression of oncogenic factors in cancer, siRNA can be used for suppressing those pathways. This review emphasizes the function of siRNA in treatment of breast tumor. The anti-apoptotic-related genes including Bcl-2, Bcl-xL and survivin can be down-regulated by siRNA in triggering cell death in breast cancer. STAT3, STAT8, Notch1, E2F3 and NF-κB are among the factors with overexpression in breast cancer that their silencing by siRNA paves the way for impairing tumor proliferation and invasion. The oncogenic mechanisms in drug resistance development in breast tumor such as lncRNAs can be suppressed by siRNA. Furthermore, siRNA reducing P-gp activity can increase drug internalization in tumor cells. Because of siRNA degradation at bloodstream and low accumulation at tumor site, nanoplatforms have been employed for siRNA delivery to suppress breast tumor progression via improving siRNA efficacy in gene silencing. Development of biocompatible and efficient nanostructures for siRNA delivery can make milestone progress in alleviation of breast cancer patients.


Assuntos
Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , RNA Interferente Pequeno/genética , Linhagem Celular Tumoral , Morte Celular , Interferência de RNA , Sistemas de Liberação de Medicamentos
8.
Cell Mol Life Sci ; 79(11): 539, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36194371

RESUMO

Breast cancer (BC) is one of the most common cancers in females and is responsible for the highest cancer-related deaths following lung cancer. The complex tumor microenvironment and the aggressive behavior, heterogenous nature, high proliferation rate, and ability to resist treatment are the most well-known features of BC. Accordingly, it is critical to find an effective therapeutic agent to overcome these deleterious features of BC. Resveratrol (RES) is a polyphenol and can be found in common foods, such as pistachios, peanuts, bilberries, blueberries, and grapes. It has been used as a therapeutic agent for various diseases, such as diabetes, cardiovascular diseases, inflammation, and cancer. The anticancer mechanisms of RES in regard to breast cancer include the inhibition of cell proliferation, and reduction of cell viability, invasion, and metastasis. In addition, the synergistic effects of RES in combination with other chemotherapeutic agents, such as docetaxel, paclitaxel, cisplatin, and/or doxorubicin may contribute to enhancing the anticancer properties of RES on BC cells. Although, it demonstrates promising therapeutic features, the low water solubility of RES limits its use, suggesting the use of delivery systems to improve its bioavailability. Several types of nano drug delivery systems have therefore been introduced as good candidates for RES delivery. Due to RES's promising potential as a chemopreventive and chemotherapeutic agent for BC, this review aims to explore the anticancer mechanisms of RES using the most up to date research and addresses the effects of using nanomaterials as delivery systems to improve the anticancer properties of RES.


Assuntos
Antineoplásicos , Neoplasias da Mama , Estilbenos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Docetaxel , Doxorrubicina/farmacologia , Feminino , Humanos , Paclitaxel , Polifenóis/farmacologia , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Estilbenos/farmacologia , Estilbenos/uso terapêutico , Microambiente Tumoral , Água
9.
Biomed Pharmacother ; 154: 113609, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36037786

RESUMO

Epigenetic factors are critical regulators of biological and pathological mechanisms and they could interact with different molecular pathways. Targeting epigenetic factors has been an idea approach in disease therapy, especially cancer. Accumulating evidence has highlighted function of long non-coding RNAs (lncRNAs) as epigenetic factors in cancer initiation and development and has focused on their association with downstream targets. microRNAs (miRNAs) are the most well-known targets of lncRNAs and present review focuses on lncRNA-miRNA axis in malignancy and therapy resistance of tumors. LncRNA-miRNA regulates cell death mechanisms such as apoptosis and autophagy in cancers. This axis affects tumor metastasis via regulating EMT and MMPs. Besides, lncRNA-miRNA axis determines sensitivity of tumor cells to chemotherapy, radiotherapy and immunotherapy. Based on the studies, lncRNAs can be affected by drugs and genetic tools in cancer therapy and this may affect expression level of miRNAs as their downstream targets, leading to cancer suppression/progression. LncRNAs have both tumor-promoting and tumor-suppressor functions in cancer and this unique function of lncRNAs has complicated their implication in tumor therapy. LncRNA-miRNA axis can also affect other signaling networks in cancer such as PI3K/Akt, STAT3, Wnt/ß-catenin and EZH2 among others. Notably, lncRNA/miRNA axis can be considered as a signature for diagnosis and prognosis in cancers.


Assuntos
MicroRNAs , RNA Longo não Codificante , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/genética
10.
Pharmacol Res ; 184: 106418, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36038043

RESUMO

Initiation and development of cancer depend on multiple factors that mutations in genes and epigenetic level can be considered as important drivers. Epigenetic factors include a large family of members and understanding their function in cancer has been a hot topic. LncRNAs are RNA molecules with no capacity in synthesis of proteins, and they have regulatory functions in cells. LncRNAs are localized in nucleus and cytoplasm, and their abnormal expression is related to development of tumor. This manuscript emphasizes on the role of lncRNA H19 in various cancers and its association with tumor hallmarks. The function of lncRNA H19 in most tumors is oncogenic and therefore, tumor cells increase its expression for promoting their progression. LncRNA H19 contributes to enhancing growth and cell cycle of cancers and by EMT induction, it is able to elevate metastasis rate. Silencing H19 induces apoptotic cell death and disrupts progression of tumors. LncRNA H19 triggers chemo- and radio-resistance in cancer cells. miRNAs are dually upregulated/down-regulated by lncRNA H19 in increasing tumor progression. Anti-cancer agents reduce lncRNA H19 in impairing tumor progression and increasing therapy sensitivity. A number of downstream targets and molecular pathways for lncRNA H19 have been detected in cancers including miRNAs, RUNX1, STAT3, ß-catenin, Akt2 and FOXM1. Clinical studies have revealed potential of lncRNA H19 as biomarker and its association with poor prognosis. LncRNA H19 can be transferred to cancer cells via exosomes in enhancing their progression.


Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Linhagem Celular Tumoral , Proliferação de Células/genética , Subunidade alfa 2 de Fator de Ligação ao Core , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , beta Catenina/metabolismo
11.
World Neurosurg ; 108: 94-100, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28867321

RESUMO

OBJECTIVE: Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary cerebral tumor. The median survival time is 15 months despite maximum treatment because the tumor is resistant to most therapeutic modalities. Several studies have indicated chemopreventive and chemotherapeutic activity of cyanidin-3-glucoside (C3G) as an anthocyanin component. We aimed to illustrate the cytotoxic and apoptogenic effects of C3G in the U87 cell line (human GBM cell line). METHODS: Cytotoxic activity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium assay after treatment with C3G at different concentrations in the U87 cell line. Cisplatin was used as a positive control for 24 and 48 hours. The percentage of apoptotic cells was determined using an Annexin V/propidium iodide assay, and the expression of bax, bcl2, and p53 genes was assessed using real-time polymerase chain reaction. RESULTS: Treatment of U87 cells with 40 µg/mL of C3G resulted in 32% apoptotic cells after 24 hours. To further confirm that C3G treatment induced apoptosis in U87 cells, RNA expression of bax, bcl2, and p53 genes was investigated after treatment. Real-time polymerase chain reaction indicated that the expression of bax and p53 increased, whereas the expression of bcl2 decreased. CONCLUSIONS: C3G had an apoptogenic effect in the GBM cell line. New information regarding the therapeutic effects of C3G in GBM could ultimately lead to the production of new drugs.


Assuntos
Antocianinas/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glucosídeos/farmacologia , Apoptose/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Cisplatino/farmacologia , Relação Dose-Resposta a Droga , Citometria de Fluxo , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fatores de Tempo , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo
12.
Iran Red Crescent Med J ; 17(11): e24609, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26732379

RESUMO

BACKGROUND: 3-4methylenedioxymethamphetamine (MDMA) is a synthetic and psychoactive drug, which is known popularly as Ecstasy and has toxic effects on human organs. OBJECTIVES: Considering the potential toxic interaction, this study was performed to quantify the expression of bax and bcl2 genes in MDMA-induced hepatotoxicity on rat liver. Subsequently, we evaluated pentoxifylline as a possible protective drug on hepatotoxicity. MATERIALS AND METHODS: Adult male Wistar rats weighting 250 - 300 grams were used in the study. The rats were equally distributed into four experimental groups (5 rat/group). MDMA was dissolved in PBS and injected intraperitoneally (IP) including untreated control, MDMA (MDMA dissolved in PBS), treated-1 (MDMA followed by PTX) and treated-2 (PTX followed by MDMA). All animals given MDMA received 3 doses of 7.5mg/kg with two hours gap between doses. Liver tissue was removed after anaesthetizing. Subsequently, RNA isolation, cDNA synthesis and Real-Time PCR were performed. Finally, data analyzed statistically to determine significantly differences between the groups (P value < 0.05). RESULTS: Using Real-Time quantitative PCR results, the gene expression ratio of bcl2 were calculated 93.80±20.64, 340.45 ± 36.60 and 47.13 ± 5.84 fold in MDMA, treated-1 and treated-2 groups, respectively. Furthermore, this ratio for bax gene obtained 2.13±0.33 fold in MDMA, 1.55 ± 0.26 fold in treated-1 and 10.44 ± 1.56 fold in treated-2 groups. CONCLUSIONS: The present study focused on molecular mechanism of MDMA in programmed cell death using gene expression quantification of a pro-apoptotic and anti-apoptoic gene in MDMA-induced hepatotoxocity. The results showed that MDMA prompted apoptosis in liver and pentoxifylline protected against hepatotoxicity before and after taking MDMA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...