Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EXCLI J ; 17: 945-951, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564073

RESUMO

Microsatellite instability (MSI) is a unique molecular alteration that is due to a defective DNA mismatch repair (MMR) system. Approximately, 15-20 % of sporadic colorectal cancers (CRC) display MSI. Determination of MSI status in CRC has prognostic and predictive implications. Additionally, detecting MSI is used diagnostically for tumor detection and classification. The present study analyzed a panel of five mononucleotide markers, BAT-25, BAT-26, NR-21, NR-22 and NR-27, amplified in a single multiplex PCR reaction to evaluate MSI status in CRC patients. Genomic DNA from 50 CRC and paired adjacent normal tissues was used for PCR-based MSI analysis. Our finding showed microsatellite instability in 36 % of specimens. Instability with differences in allele lengths was observed in the tumoral DNA compared to the tumor-free margin DNA sample. The frequency of instability in NR-21, BAT-26 and BAT-25 markers were more than others; their frequency were 35.48 %, 29.03 %, and 22.58 %, respectively. In conclusion, the NR-21, BAT-26, and BAT-25 were the most useful markers for discriminating cancer tissue from normal, therefore these markers have demonstrated promising potential for determining MSI status in patients with sporadic colorectal cancer.

2.
EXCLI J ; 17: 159-168, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29743854

RESUMO

Colorectal cancer (CRC) is a heterogeneous disease that is caused by the interaction of genetic and environmental factors. Although it is one of the most common cancers worldwide, CRC would be one of the most curable cancers if it is detected in the early stages. Molecular changes that occur in colorectal cancer may be categorized into three main groups: 1) Chromosomal Instability (CIN), 2) Microsatellite Instability (MSI), and 3) CpG Island Methylator phenotype (CIMP). Microsatellites, also known as Short Tandem Repeats (STRs) are small (1-6 base pairs) repeating stretches of DNA scattered throughout the entire genome and account for approximately 3 % of the human genome. Due to their repeated structure, microsatellites are prone to high mutation rate. Microsatellite instability (MSI) is a unique molecular alteration and hyper-mutable phenotype, which is the result of a defective DNA mismatch repair (MMR) system, and can be defined as the presence of alternate sized repetitive DNA sequences which are not present in the corresponding germ line DNA. The presence of MSI is found in sporadic colon, gastric, sporadic endometrial and the majority of other cancers. Approximately, 15-20 % of colorectal cancers display MSI. Determination of MSI status in CRC has prognostic and therapeutic implications. As well, detecting MSI is used diagnostically for tumor detection and classification. For these reasons, microsatellite instability analysis is becoming more and more important in colorectal cancer patients. The objective of this review is to provide the comprehensive summary of the update knowledge of colorectal cancer classification and diagnostic features of microsatellite instability.

3.
Bioengineered ; 8(5): 555-564, 2017 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-28140749

RESUMO

Cancers are among the most serious threats of human health worldwide. Survival and mortality rates of colorectal cancer (CRC) strongly depend on the early diagnosis. The aberrant methylation pattern of genes as a diagnostic biomarker can serve as a practical option for timely detection and contribute subsequently to the enhancement of survival rate in CRC patients, since methylation changes are not only frequent but also can occur in initial tumorogenesis stages. It has been indicated that EDNRB and KISS1 genes are hypermethylated through progression and development of CRC. In current study, after extraction of genomic DNA from 45 paired tumor and adjacent non-cancerous tissue samples and treatment with bisulfite conversion, the methylation status of EDNRB and KISS1 CpG rich regions were assessed quantitatively using MS-HRM assay to determine practicability of these aberrant methylations for diagnosis of sporadic CRC and its discrimination from corresponding normal tissues. The results showed that the methylation distribution differences, comparing tumor tissues with their adjacent non-cancerous tissues, were statistically significant in all selected locations within EDNRB gene promoter (P < 0.001); they had also some correlations with tumor stage and grade. Nonetheless, methylation distribution in KISS1 gene CpG rich region revealed no statistically significant differences between CRC and adjacent non-cancerous tissues (P = 0.060). Overall, it can be concluded that aberrant methylated EDNRB can be a promising potential diagnostic biomarker for CRC, while KISS1 is controversial and needs to be more investigated.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Kisspeptinas/genética , Receptor de Endotelina B/genética , Metilação de DNA , Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , Humanos , Irã (Geográfico)/epidemiologia , Mutação , Polimorfismo de Nucleotídeo Único/genética , Prevalência , Reprodutibilidade dos Testes , Fatores de Risco , Sensibilidade e Especificidade
4.
Oncol Lett ; 12(6): 5335-5343, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28105243

RESUMO

Colorectal cancer (CRC) is one of the most common malignancies, and the third leading cause of cancer mortality worldwide. Timely detection of CRC in patients with earlier stages provides the highest rate of survival. Epigenetic alterations are important in the occurrence and progression of CRC, and represent the primary modifications of cancer cells. Therefore, detection of these alterations in CRC cases are thought to hold great promise as diagnostic biomarkers. It has been shown that the SEPT9 and NTRK3 genes are aberrantly methylated and their detection can be used as biomarkers for early diagnosis of CRC. The present study analyzed promoter methylation status of these genes in CRC patients. Genomic DNA was extracted from 45 CRC and paired adjacent healthy tissues and undergone bisulfite conversion, and the methylation status of NTRK3 and SEPT9 were defined using the MS-HRM assay. Our results showed that there are statistically significant differences in methylation status of NTRK3 and specially SEPT9 between CRC and adjacent normal tissues (P<0.001). High sensitivity and specificity for a specific location in SEPT9 gene promoter as a diagnostic biomarker was observed. SEPT9 promoter hypermethylation may serve as a promising biomarker for the detection of CRC development. However, to validate the biomarker potential of NTRK3 there is a requirement for further investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...