Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
N Biotechnol ; 70: 102-108, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35636700

RESUMO

The demand for novel, robust microbial biocatalysts for use in industrial and pharmaceutical applications continues to increase rapidly. As a result, there is a need to develop advanced tools and technologies to exploit the vast metabolic potential of unculturable microorganisms found in various environments. Single-cell and functional metagenomics studies can explore the enzymatic potential of entire microbial communities in a given environment without the need to culture the microorganisms. This approach has contributed substantially to the discovery of unique microbial genes for industrial and medical applications. Functional metagenomics involves the extraction of microbial DNA directly from environmental samples, constructing expression libraries comprising the entire microbial genome, and screening of the libraries for the presence of desired phenotypes. In this study, lipolytic enzymes from the Red Sea were targeted. A high-throughput single-cell microfluidic platform combined with a laser-based fluorescent screening bioassay was employed to discover new genes encoding lipolytic enzymes. Analysis of the metagenomic library led to the identification of three microbial genes encoding lipases based on their functional similarity and sequence homology to known lipases. The results demonstrated that microfluidics is a robust technology that can be used for screening in functional metagenomics. The results also indicate that the Red Sea is a promising, under-investigated source of new genes and gene products.


Assuntos
Metagenômica , Microbiota , Enzimas , Biblioteca Gênica , Lipase/genética , Lipase/metabolismo , Metagenoma
2.
BMC Genomics ; 23(1): 277, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35392799

RESUMO

BACKGROUND: Global climate change together with growing desertification is leading to increased dust emissions to the atmosphere, drawing attention to possible impacts on marine ecosystems receiving dust deposition. Since microorganisms play important roles in maintaining marine homeostasis through nutrient cycling and carbon flow, detrimental changes in the composition of marine microbiota in response to increased dust input could negatively impact marine health, particularly so in seas located within the Global Dust Belt. Due to its strategic location between two deserts and unique characteristics, the Red Sea provides an attractive semi-enclosed "megacosm" to examine the impacts of large dust deposition on the vastly diverse microbiota in its exceptionally warm oligotrophic waters. RESULTS: We used culture-independent metagenomic approaches to assess temporal changes in the Red Sea microbiota in response to two severe sandstorms, one originated in the Nubian Desert in the summer 2016 and a second one originated in the Libyan Desert in the spring 2017. Despite differences in sandstorm origin and meteorological conditions, both sandstorms shifted bacterial and Archaeal groups in a similar mode. In particular, the relative abundance of autotrophic bacteria declined while those of heterotrophic bacteria, particularly Bacteroidetes, and Archaea increased. The changes peaked within six days from the start of sandstorms, and the community recovered the original assemblage within one month. CONCLUSION: Our results suggest that increased dust emission with expanding desertification could lead to undesirable impacts in ocean function, enhancing heterotrophic processes while reducing autotrophic ones, thereby affecting the marine food web in seas receiving dust deposition.


Assuntos
Poeira , Microbiota , Archaea/genética , Bactérias/genética , Poeira/análise , Oceano Índico , Metagenômica
3.
ISME Commun ; 2(1): 92, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37938694

RESUMO

Single-cell genomics is applied to environmental samples as a method to solve the problems of current metagenomics. However, in the fluorescence-activated cell sorting-based cell isolation and subsequent whole genome amplification, the sorting efficiency and the sequence quality are greatly affected by the type of target environment, limiting its adaptability. Here, we developed an improved single-cell genomics platform, named SAG-gel, which utilizes gel beads for single-cell isolation, lysis, and whole genome amplification. To validate the versatility of SAG-gel, single-cell genome sequencing was performed with model bacteria and microbial samples collected from eight environmental sites, including soil and seawater. Gel beads enabled multiple lysis treatments. The genome coverage with model bacteria was improved by 9.1-25%. A total of 734 single amplified genomes were collected from the diverse environmental samples, and almost full-length 16S rRNA genes were recovered from 57.8% of them. We also revealed two marine Rhodobacter strains harboring nearly identical 16S rRNA genes but having different genome contents. In addition, searching for viral sequences elucidated the virus-host linkage over the sampling sites, revealing the geographic distribution and diverse host range of viruses.

4.
Genomics Proteomics Bioinformatics ; 19(3): 504-518, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34952209

RESUMO

Droplet microfluidic techniques have shown promising outcome to study single cells at high throughput. However, their adoption in laboratories studying "-omics" sciences is still irrelevant due to the complex and multidisciplinary nature of the field. To facilitate their use, here we provide engineering details and organized protocols for integrating three droplet-based microfluidic technologies into the metagenomic pipeline to enable functional screening of bioproducts at high throughput. First, a device encapsulating single cells in droplets at a rate of ∼250 Hz is described considering droplet size and cell growth. Then, we expand on previously reported fluorescence-activated droplet sorting systems to integrate the use of 4 independent fluorescence-exciting lasers (i.e., 405, 488, 561, and 637 nm) in a single platform to make it compatible with different fluorescence-emitting biosensors. For this sorter, both hardware and software are provided and optimized for effortlessly sorting droplets at 60 Hz. Then, a passive droplet merger is also integrated into our pipeline to enable adding new reagents to already-made droplets at a rate of 200 Hz. Finally, we provide an optimized recipe for manufacturing these chips using silicon dry-etching tools. Because of the overall integration and the technical details presented here, our approach allows biologists to quickly use microfluidic technologies and achieve both single-cell resolution and high-throughput capability (>50,000 cells/day) for mining and bioprospecting metagenomic data.


Assuntos
Metagenômica , Microfluídica , Microfluídica/métodos
5.
Genome Biol Evol ; 10(8): 1970-1987, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29961874

RESUMO

Dust and sandstorm events inject substantial quantities of foreign microorganisms into global ecosystems, with the ability to impact distant environments. The majority of these microorganisms originate from deserts and drylands where the soil is laden with highly stress-resistant microbes capable of thriving under extreme environmental conditions, and a substantial portion of them survive long journeys through the atmosphere. This large-scale transmission of highly resilient alien microbial contaminants raises concerns with regards to the invasion of sensitive and/or pristine sink environments, and to human health-concerns exacerbated by increases in the rate of desertification. Further increases in the transport of dust-associated microbiota could extend the spread of foreign microbes to new ecosystems, increase their load in present sink environments, disrupt ecosystem balance, and potentially introduce new pathogens. Our present understanding of these microorganisms, their phylogenic affiliations and functional significance, is insufficient to determine their impact. The purpose of this review is to provide an overview of available data regarding dust and sandstorm microbiota and their potential ramifications on human and ecosystem health. We conclude by discussing current gaps in dust and sandstorm microbiota research, and the need for collaborative studies involving high-resolution meta-omic approaches in conjunction with extensive ecological time-series studies to advance the field towards an improved and sufficient understanding of these invisible atmospheric travelers and their global ramifications.


Assuntos
Poeira , Internacionalidade , Microbiota , Agricultura , Ecossistema , Geografia , Humanos , Metagenômica
6.
Gene ; 576(2 Pt 1): 717-23, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26526132

RESUMO

Metagenomics has significantly advanced the field of marine microbial ecology, revealing the vast diversity of previously unknown microbial life forms in different marine niches. The tremendous amount of data generated has enabled identification of a large number of microbial genes (metagenomes), their community interactions, adaptation mechanisms, and their potential applications in pharmaceutical and biotechnology-based industries. Comparative metagenomics reveals that microbial diversity is a function of the local environment, meaning that unique or unusual environments typically harbor novel microbial species with unique genes and metabolic pathways. The Red Sea has an abundance of unique characteristics; however, its microbiota is one of the least studied among marine environments. The Red Sea harbors approximately 25 hot anoxic brine pools, plus a vibrant coral reef ecosystem. Physiochemical studies describe the Red Sea as an oligotrophic environment that contains one of the warmest and saltiest waters in the world with year-round high UV radiations. These characteristics are believed to have shaped the evolution of microbial communities in the Red Sea. Over-representation of genes involved in DNA repair, high-intensity light responses, and osmoregulation were found in the Red Sea metagenomic databases suggesting acquisition of specific environmental adaptation by the Red Sea microbiota. The Red Sea brine pools harbor a diverse range of halophilic and thermophilic bacterial and archaeal communities, which are potential sources of enzymes for pharmaceutical and biotechnology-based application. Understanding the mechanisms of these adaptations and their function within the larger ecosystem could also prove useful in light of predicted global warming scenarios where global ocean temperatures are expected to rise by 1-3°C in the next few decades. In this review, we provide an overview of the published metagenomic studies that were conducted in the Red Sea, and the bio-prospecting potential of the Red Sea microbiota. Furthermore, we discuss the limitations of the previous studies and the need for generating a large and representative metagenomic database of the Red Sea to help establish a dynamic model of the Red Sea microbiota.


Assuntos
Metagenômica , Biotecnologia , Oceano Índico , Microbiota
7.
J Physiol ; 594(11): 2971-83, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26670924

RESUMO

KEY POINTS: Angiopoietin-like 4 (ANGPTL4) modulates tendon neovascularization. Cyclic loading stimulates the activity of transforming growth factor-ß and hypoxia-inducible factor 1α and thereby increases the expression and release of ANGPTL4 from human tendon cells. Targeting ANGPTL4 and its regulatory pathways is a potential avenue for regulating tendon vascularization to improve tendon healing or adaptation. ABSTRACT: The mechanisms that regulate angiogenic activity in injured or mechanically loaded tendons are poorly understood. The present study examined the potential role of angiopoietin-like 4 (ANGPTL4) in the angiogenic response of tendons subjected to repetitive mechanical loading or injury. Cyclic stretching of human tendon fibroblasts stimulated the expression and release of ANGPTL4 protein via transforming growth factor-ß (TGF-ß) and hypoxia-inducible factor 1α (HIF-1α) signalling, and the released ANGPTL4 was pro-angiogenic. Angiogenic activity was increased following ANGPTL4 injection into mouse patellar tendons, whereas the patellar tendons of ANGPTL4 knockout mice displayed reduced angiogenesis following injury. In human rotator cuff tendons, the expression of ANGPTL4 was correlated with the density of tendon endothelial cells. To our knowledge, this is the first study characterizing a role of ANGPTL4 in the tendon. ANGPTL4 may assist in the regulation of vascularity in the injured or mechanically loaded tendon. TGF-ß and HIF-1α comprise two signalling pathways that modulate the expression of ANGPTL4 by mechanically stimulated tendon fibroblasts and, in the future, these could be manipulated to influence tendon healing or adaptation.


Assuntos
Angiopoietinas/biossíntese , Fibroblastos/metabolismo , Neovascularização Fisiológica/fisiologia , Tendões/metabolismo , Suporte de Carga/fisiologia , Aminoácidos Dicarboxílicos/farmacologia , Proteína 4 Semelhante a Angiopoietina , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Fibroblastos/efeitos dos fármacos , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica/efeitos dos fármacos , Tendões/efeitos dos fármacos
8.
Genome Biol Evol ; 7(5): 1216-26, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25953766

RESUMO

Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles.


Assuntos
Microbiologia do Ar , Metagenômica/tendências , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Fungos/genética , Fungos/isolamento & purificação , Genes de RNAr , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica/métodos , Análise de Sequência de DNA , Vírus/isolamento & purificação
9.
J Orthop Res ; 33(1): 9-16, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25293783

RESUMO

Mast cells and fibroblasts are two key players involved in many fibrotic and degenerative disorders. In the present study we examined the nature of binding interactions between human mast cells and tendon fibroblasts (tenocytes). In the mast cell-fibroblast co-culture model, mast cells were shown to spontaneously bind to tenocytes, in a process that was partially mediated by α5ß1 integrin receptors. The same receptors on mast cells significantly mediated binding of these cells to tissue culture plates in the presence of tenocyte-conditioned media; the tenocyte-derived fibronectin in the media was shown to also play a major role in these binding activities. Upon binding to tenocytes or tissue culture plates, mast cells acquired an elongated phenotype, which was dependent on α5ß1 integrin and tenocyte fibronectin. Additionally, tenocyte-derived fibronectin significantly enhanced mRNA expression of the adhesion molecule, THY1, by mast cells. Our data suggests that α5ß1 integrin mediates binding of mast cells to human tenocyte and to tenocyte-derived ECM proteins, in particular fibronectin.


Assuntos
Comunicação Celular/fisiologia , Fibroblastos/citologia , Mastócitos/citologia , Tendões/citologia , Adesão Celular/fisiologia , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura , Matriz Extracelular/fisiologia , Feminino , Fibroblastos/fisiologia , Fibronectinas/fisiologia , Humanos , Técnicas In Vitro , Integrina alfa5beta1/fisiologia , Masculino , Mastócitos/fisiologia , Proteínas Proto-Oncogênicas c-kit/fisiologia , Tendões/fisiologia , Antígenos Thy-1/fisiologia
10.
PLoS One ; 9(12): e114214, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25502628

RESUMO

OBJECTIVE: Clinical studies have suggested an association between dyslipidemia and tendon injuries or chronic tendon pain; the mechanisms underlying this association are not yet known. The objectives of this study were (1) to evaluate the impact of a high fat diet on the function of load-bearing tendons and on the distribution in tendons of oxidized low density lipoprotein (oxLDL), and (2) to examine the effect of oxLDL on tendon fibroblast proliferation and gene expression. METHODS: Gene expression (Mmp2, Tgfb1, Col1a1, Col3a1), fat content (Oil Red O staining), oxLDL levels (immunohistochemistry) and tendon biomechanical properties were examined in mice (C57Bl/6 or ApoE -/-) receiving a standard or a high fat diet. Human tendon fibroblast proliferation and gene expression (COL1A1, COL3A1, MMP2) were examined following oxLDL exposure. RESULTS: In both types of mice (C57Bl/6 or ApoE -/-), consumption of a high fat diet led to a marked increase in oxLDL deposition in the load-bearing extracellular matrix of the tendon. The consumption of a high fat diet also reduced the failure stress and load of the patellar tendon in both mouse types, and increased Mmp2 expression. ApoE -/- mice exhibited more pronounced reductions in tendon function than wild-type mice, and decreased expression of Col1a1 compared to wild type mice. Human tendon fibroblasts responded to oxLDL by increasing their proliferation and their mRNA levels of MMP2, while decreasing their mRNA levels for COL1A1 and COL3A1. CONCLUSION: The consumption of a high fat diet resulted in deleterious changes in tendon function, and these changes may be explained in part by the effects of oxLDL, which induced a proliferative, matrix-degrading phenotype in human tenocytes.


Assuntos
Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Dieta Hiperlipídica/efeitos adversos , Técnicas de Inativação de Genes , Lipoproteínas LDL/metabolismo , Tendões/efeitos dos fármacos , Tendões/metabolismo , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo III/genética , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lipoproteínas LDL/farmacologia , Masculino , Metaloproteinase 2 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Tendões/citologia , Fator de Crescimento Transformador beta/genética
11.
PLoS One ; 9(5): e97356, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24824595

RESUMO

Angiogenesis is associated with the tissue changes underlying chronic overuse tendinopathy. We hypothesized that repetitive, cyclic loading of human tendon cells would lead to increased expression and activity of angiogenic factors. We subjected isolated human tendon cells to overuse tensile loading using an in vitro model (1 Hz, 10% equibiaxial strain). We found that mechanically stimulated human tendon cells released factors that promoted in vitro proliferation and tube formation by human umbilical vein endothelial cells (HUVEC). In response to cyclic strain, there was a transient increase in the expression of several angiogenic genes including ANGPTL4, FGF-2, COX-2, SPHK1, TGF-alpha, VEGF-A and VEGF-C, with no change in anti-angiogenic genes (BAI1, SERPINF1, THBS1 and 2, TIMP1-3). Cyclic strain also resulted in the extracellular release of ANGPTL4 protein by tendon cells. Our study is the first report demonstrating the induction of ANGPTL4 mRNA and release of ANGPTL4 protein in response to cyclic strain. Tenocytes may contribute to the upregulation of angiogenesis during the development of overuse tendinopathy.


Assuntos
Indutores da Angiogênese/metabolismo , Transtornos Traumáticos Cumulativos/fisiopatologia , Regulação da Expressão Gênica/fisiologia , Estresse Fisiológico/fisiologia , Tendões/metabolismo , Análise de Variância , Proteína 4 Semelhante a Angiopoietina , Angiopoietinas/metabolismo , Fenômenos Biomecânicos , Western Blotting , Transtornos Traumáticos Cumulativos/metabolismo , Ciclo-Oxigenase 2/metabolismo , Primers do DNA/genética , Ensaio de Imunoadsorção Enzimática , Fator 2 de Crescimento de Fibroblastos/metabolismo , Citometria de Fluxo , Perfilação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Técnicas In Vitro , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Estimulação Física , Tendões/citologia , Fator de Crescimento Transformador alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo
12.
Arthritis Res Ther ; 15(6): R184, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24517261

RESUMO

INTRODUCTION: We have previously found an increased mast cell density in tendon biopsies from patients with patellar tendinopathy compared to controls. This study examined the influence of mast cells on basic tenocyte functions, including production of the inflammatory mediator prostaglandin E2 (PGE2), extracellular matrix remodeling and matrix metalloproteinase (MMP) gene transcription, and collagen synthesis. METHODS: Primary human tenocytes were stimulated with an established human mast cell line (HMC-1). Extracellular matrix remodeling was studied by culturing tenocytes in a three-dimensional collagen lattice. Survival/proliferation was assessed with the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt (MTS) assay. Levels of mRNA for COX-2, COL1A1, MMP1, and MMP7 were determined by quantitative real-time polymerase chain reaction (qPCR). Cox-2 protein level was assessed by Western blot analysis and type I procollagen was detected by immunofluorescent staining. PGE2 levels were determined using an enzyme-linked immunosorbent assay (ELISA). RESULTS: Mast cells stimulated tenocytes to produce increased levels of COX-2 and the pro-inflammatory mediator PGE2, which in turn decreased COL1A1 mRNA expression. Additionally, mast cells reduced the type I procollagen protein levels produced by tenocytes. Transforming growth factor beta 1 (TGF-ß1) was responsible for the induction of Cox-2 and PGE2 by tenocytes. Mast cells increased MMP1 and MMP7 transcription and increased the contraction of a three-dimensional collagen lattice by tenocytes, a phenomenon which was blocked by a pan-MMP inhibitor (Batimastat). CONCLUSION: Our data demonstrate that mast cell-derived PGE2 reduces collagen synthesis and enhances expression and activities of MMPs in human tenocytes.


Assuntos
Fibroblastos/metabolismo , Inflamação/metabolismo , Mastócitos/metabolismo , Tendinopatia/metabolismo , Western Blotting , Células Cultivadas , Técnicas de Cocultura , Colágeno/metabolismo , Dinoprostona/biossíntese , Ensaio de Imunoadsorção Enzimática , Matriz Extracelular/metabolismo , Fibroblastos/imunologia , Imunofluorescência , Humanos , Inflamação/imunologia , Mastócitos/imunologia , Metaloproteinases da Matriz/biossíntese , Reação em Cadeia da Polimerase em Tempo Real , Tendinopatia/imunologia
13.
J Infect Dis ; 205(3): 466-73, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22147791

RESUMO

BACKGROUND: The decline in influenza vaccine efficacy in older adults is associated with a limited ability of current split-virus vaccines (SVVs) to stimulate cytotoxic T lymphocyte (CTL) responses required for clinical protection against influenza. METHODS: The Toll-like receptor 4 agonist glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE) was combined with SVV to stimulate peripheral blood mononuclear cells (PBMCs) in vitro to determine the cytokine response in dendritic cell subsets. Stimulated PBMCs were then challenged with live influenza virus to mimic the response to natural infection following vaccination, using previously identified T-cell correlates of protection. RESULTS: GLA-SE significantly increased the proportion of myeloid dendritic cells that produced tumor necrosis factor α, interleukin 6, and interleukin 12. When combined with SVV to stimulate PBMCs in vitro, this effect of GLA-SE was shown to regulate a T-helper 1 cell response upon challenge with live influenza virus; interleukin 10 production was suppressed, thus significantly increasing the interferon γ to interleukin 10 ratio and the cytolytic (granzyme B) response to influenza virus challenge, both of which have been shown to correlate with protection against influenza in older adults. CONCLUSIONS: Our findings suggest that a novel adjuvant, GLA-SE, combined with standard SVV has the potential to significantly improve vaccine-mediated protection against influenza in older adults.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vacinas contra Influenza/imunologia , Leucócitos Mononucleares/imunologia , Receptor 4 Toll-Like/agonistas , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/imunologia , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Células Th1/imunologia , Vacinas de Subunidades Antigênicas/imunologia
14.
Cytokine ; 38(2): 74-83, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17604640

RESUMO

We have investigated phosphatidylinositol 3-kinase (PI3K)-dependent survival signalling pathways using several cytokines in three different hemopoietic cell lines, MC/9, FDC-P1, and TF-1. Cytokines caused PI3K- and PKB-dependent phosphorylation of FOXO3a (previously known as FKHRL1) at three distinct sites. Following cytokine withdrawal or PI3K inhibition, both of which are known to lead to apoptosis, there was a loss of FOXO3a phosphorylation, and a resulting increase in forkhead transcriptional activity, along with increased expression of Fas Ligand (FasL), which could be detected at the cell surface. Concurrently, an increase in cell surface expression of Fas was also detected. Despite the presence of both FasL and Fas, there was no detectable evidence that activation of Fas-mediated apoptotic events was contributing to apoptosis resulting from cytokine starvation or inhibition of PI3K activity. Thus, inhibition of FOXO3a activity is mediated by the PI3K-PKB pathway, but regulation of FasL is not the primary means by which cell survival is regulated in cytokine-dependent hemopoietic cells. We were also able to confirm increased expression of known FOXO3a targets, Bim and p27kip1. Together, these results support the conclusion that mitochondrial-mediated signals play the major role in apoptosis of hemopoietic cells due to loss of cytokine signalling.


Assuntos
Apoptose/fisiologia , Citocinas/fisiologia , Regulação para Baixo/fisiologia , Proteína Ligante Fas/genética , Fatores de Transcrição Forkhead/fisiologia , Hematopoese/fisiologia , Receptor fas/fisiologia , Animais , Linhagem Celular Tumoral , Citocinas/deficiência , Proteína Ligante Fas/antagonistas & inibidores , Proteína Ligante Fas/biossíntese , Proteína Forkhead Box O3 , Humanos , Camundongos , Fosfatidilinositol 3-Quinases/fisiologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...