Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 121(20): 206003, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30500259

RESUMO

We studied the interaction of water with the anatase TiO_{2}(001) surface by means of scanning tunneling microscopy, x-ray photoelectron spectroscopy, and density functional theory calculations. Water adsorbs dissociatively on the ridges of a (1×4) reconstructed surface, resulting in a (3×4) periodic structure of hydroxyl pairs. We observed this process at 120 K, and the created hydroxyls desorb from the surface by recombination to water, which occurs below 300 K. Our calculations reveal the water dissociation mechanism and uncover a very pronounced dependence on the coverage. This strong coverage dependence is explained through water-induced reconstruction on anatase TiO_{2}(001)-(1×4). The high intrinsic reactivity of the anatase TiO_{2}(001) surface towards water observed here is fundamentally different from that seen on other surfaces of titania and may explain its high catalytic activity in heterogeneous catalysis and photocatalysis.

2.
Phys Chem Chem Phys ; 19(21): 14020-14029, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28516986

RESUMO

The sulfidation of a MoO3 precursor into MoS2 is an important step in the preparation of catalysts for the hydrodesulfurization process that is widely utilized in oil refineries. Molybdenum oxides are also the most commonly used precursors for MoS2 growth in, e.g., the synthesis of novel two-dimensional materials. In the present study, we investigate the transformation of MoOx into MoS2 on a model Au(111) surface through sulfidation in H2S gas atmosphere using in situ scanning tunneling microscopy and X-ray photoemission spectroscopy. We find that progressive annealing steps of physical vapor deposited MoO3 powder allow us to control the stoichiometry and oxidation state of the precursor oxide. Subsequently, we investigate the sulfidation of the compounds ranging from pure low-oxygen Mo to fully oxidized MoO3 oxide sulfidation using two different methods. We find that the prerequisite for the efficient formation of MoS2 is that Mo stays in the highest Mo6+ state before sulfidation, whereas the presence of the reduced MoOx phase impedes the MoS2 growth. We also find that it is more efficient to form MoS2 by post-sulfidation of MoOx rather than its reactive deposition in H2S gas, which leads to rather stable amorphous oxysulfide phases.

3.
Phys Chem Chem Phys ; 19(14): 9424-9431, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28327708

RESUMO

To understand the structure-reactivity relationships for mixed-metal oxide catalysts, well-defined systems are required. Mixtures of vanadia and titania (TiO2) are of particular interest for application in heterogeneous catalysis, with TiO2 often acting as the support. By utilizing high-resolution scanning tunneling microscopy, we studied the interaction of vanadium (V) with the anatase TiO2(101) surface in the sub-monolayer regime. At 80 K, metallic V nucleates into homogeneously distributed clusters onto the terraces with no preference for nucleation at the step edges. However, embedding of single V atoms into TiO2 occurs following annealing at room temperature. In conjunction with X-ray photoelectron spectroscopy data and density functional theory calculations, we propose that monomeric V atoms occupy positions of regular surface Ti sites, i.e., Ti atoms are substituted by V atoms.

4.
Nat Commun ; 6: 8845, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26567989

RESUMO

Metal adhesion on metal oxides is strongly controlled by the oxide surface structure and composition, but lack of control over the surface conditions often limits the possibilities to exploit this in opto- and micro-electronics applications and heterogeneous catalysis where nanostructural control is of utmost importance. The Cu/ZnO system is among the most investigated of such systems in model studies, but the presence of subsurface ZnO defects and their important role for adhesion on ZnO have been unappreciated so far. Here we reveal that the surface-directed migration of subsurface defects affects the Cu adhesion on polar ZnO(0001) in the technologically interesting temperature range up to 550 K. This leads to enhanced adhesion and ultimately complete wetting of ZnO(0001) by a Cu overlayer. On the basis of our experimental and computational results we demonstrate a mechanism which implies that defect concentrations in the bulk are an important, and possibly controllable, parameter for the metal-on-oxide growth.

5.
Sci Rep ; 5: 8223, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25650038

RESUMO

The growth of ultra-thin KCl films on the Si(111)7 × 7 reconstructed surface has been investigated as a function of KCl coverage and substrate temperature. The structure and morphology of the films were characterized by means of scanning tunneling microscopy (STM) under ultra-high vacuum (UHV) conditions. Detailed analysis of the atomically resolved STM images of islands grown at room and high temperatures (400 K-430 K) revealed the presence of KCl(001) and KCl(111) islands with the ratio between both structures depending on the growth temperature. At room temperature, the growth of the first layer, which covers the initial Si(111)7 × 7 surface, contains double/triple atomic layers of KCl(001) with a small fraction of KCl(111) islands. The high temperature growth promotes the appearance of large KCl(111) areas, which are built up by three atomic layers. At room and high temperatures, flat and atomically well-defined ultra-thin KCl films can be grown on the Si(111)7 × 7 substrate. The formation of the above mentioned (111) polar films is interpreted as a result of the thermally activated dissociative adsorption of KCl molecules on Si(111)7 × 7, which produces an excess of potassium on the Si surface.

6.
Beilstein J Nanotechnol ; 4: 208-17, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23616940

RESUMO

BACKGROUND: ZnO nanostructures are promising candidates for the development of novel electronic devices due to their unique electrical and optical properties. Here, photoconductive atomic force microscopy (PC-AFM) has been applied to investigate transient photoconductivity and photocurrent spectra of upright-standing ZnO nanorods (NRs). With a view to evaluate the electronic properties of the NRs and to get information on recombination kinetics, we have also performed time-resolved photoluminescence measurements macroscopically. RESULTS: Persistent photoconductivity from single ZnO NRs was observed for about 1800 s and was studied with the help of photocurrent spectroscopy, which was recorded locally. The photocurrent spectra recorded from single ZnO NRs revealed that the minimum photon energy sufficient for photocurrent excitation is 3.1 eV. This value is at least 100 meV lower than the band-gap energy determined from the photoluminescence experiments. CONCLUSION: The obtained results suggest that the photoresponse in ZnO NRs under ambient conditions originates preferentially from photoexcitation of charge carriers localized at defect states and dominates over the oxygen photodesorption mechanism. Our findings are in agreement with previous theoretical predictions based on density functional theory calculations as well as with earlier experiments carried out at variable oxygen pressure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...