Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Cancer ; 137(6): 1318-29, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25716227

RESUMO

The ability to escape apoptosis is a hallmark of cancer-initiating cells and a key factor of resistance to oncolytic therapy. Here, we identify FAM96A as a ubiquitous, evolutionarily conserved apoptosome-activating protein and investigate its potential pro-apoptotic tumor suppressor function in gastrointestinal stromal tumors (GISTs). Interaction between FAM96A and apoptotic peptidase activating factor 1 (APAF1) was identified in yeast two-hybrid screen and further studied by deletion mutants, glutathione-S-transferase pull-down, co-immunoprecipitation and immunofluorescence. Effects of FAM96A overexpression and knock-down on apoptosis sensitivity were examined in cancer cells and zebrafish embryos. Expression of FAM96A in GISTs and histogenetically related cells including interstitial cells of Cajal (ICCs), "fibroblast-like cells" (FLCs) and ICC stem cells (ICC-SCs) was investigated by Northern blotting, reverse transcription-polymerase chain reaction, immunohistochemistry and Western immunoblotting. Tumorigenicity of GIST cells and transformed murine ICC-SCs stably transduced to re-express FAM96A was studied by xeno- and allografting into immunocompromised mice. FAM96A was found to bind APAF1 and to enhance the induction of mitochondrial apoptosis. FAM96A protein or mRNA was dramatically reduced or lost in 106 of 108 GIST samples representing three independent patient cohorts. Whereas ICCs, ICC-SCs and FLCs, the presumed normal counterparts of GIST, were found to robustly express FAM96A protein and mRNA, FAM96A expression was much reduced in tumorigenic ICC-SCs. Re-expression of FAM96A in GIST cells and transformed ICC-SCs increased apoptosis sensitivity and diminished tumorigenicity. Our data suggest FAM96A is a novel pro-apoptotic tumor suppressor that is lost during GIST tumorigenesis.


Assuntos
Apoptose/genética , Proteínas de Transporte/genética , Tumores do Estroma Gastrointestinal/genética , Proteínas Supressoras de Tumor/genética , Animais , Fator Apoptótico 1 Ativador de Proteases/genética , Linhagem Celular , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Expressão Gênica/genética , Células HEK293 , Humanos , Células Intersticiais de Cajal/metabolismo , Metaloproteínas , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Mitocôndrias/genética , Peixe-Zebra/genética
2.
Mol Cell ; 38(3): 356-68, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20471942

RESUMO

p53 limits the proliferation of precancerous cells by inducing cell-cycle arrest or apoptosis. How the decision between survival and death is made at the level of p53 binding to target promoters remains unclear. Using cancer cell lines, we show that the cooperative nature of DNA binding extends the binding spectrum of p53 to degenerate response elements in proapoptotic genes. Mutational inactivation of cooperativity therefore does not compromise the cell-cycle arrest response but strongly reduces binding of p53 to multiple proapoptotic gene promoters (BAX, PUMA, NOXA, CASP1). Vice versa, engineered mutants with increased cooperativity show enhanced binding to proapoptotic genes, which shifts the cellular response to cell death. Furthermore, the cooperativity of DNA binding determines the extent of apoptosis in response to DNA damage. Because mutations, which impair cooperativity, are genetically linked to cancer susceptibility in patients, DNA binding cooperativity contributes to p53's tumor suppressor activity.


Assuntos
Apoptose , Ciclo Celular , Proliferação de Células , DNA/metabolismo , Regiões Promotoras Genéticas , Proteína Supressora de Tumor p53/metabolismo , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Sítios de Ligação , Ciclo Celular/genética , Dano ao DNA , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Fatores de Tempo , Transfecção , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética
3.
Hepatology ; 50(4): 1121-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19637194

RESUMO

UNLABELLED: We identified the far upstream element binding protein 1 (FBP1), an activator of transcription of the proto-oncogene c-myc, in a functional yeast survival screen for tumor-related antiapoptotic proteins and demonstrated strong overexpression of FBP1 in human hepatocellular carcinoma (HCC). Knockdown of the protein in HCC cells resulted in increased sensitivity to apoptotic stimuli, reduced cell proliferation, and impaired tumor formation in a mouse xenograft transplantation model. Interestingly, analysis of gene regulation in these cells revealed that c-myc levels were not influenced by FBP1 in HCC cells. Instead, we identified the cell cycle inhibitor p21 as a direct target gene repressed by FBP1, and in addition, expression levels of the proapoptotic genes tumor necrosis factor alpha, tumor necrosis factor-related apoptosis-inducing ligand, Noxa, and Bik were elevated in the absence of FBP1. CONCLUSION: Our data establish FBP1 as an important oncoprotein overexpressed in HCC that induces tumor propagation through direct or indirect repression of cell cycle inhibitors and proapoptotic target genes.


Assuntos
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Animais , Apoptose/fisiologia , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Humanos , Camundongos , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas de Ligação a RNA , Transdução de Sinais/fisiologia , Transplante Heterólogo
4.
EMBO J ; 27(5): 792-803, 2008 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-18239687

RESUMO

p53 is known to prevent tumour formation by restricting the proliferation of damaged or oncogene-expressing cells. In contrast, how the p53 family member p73 suppresses tumour formation remains elusive. Using a step-wise transformation protocol for human cells, we show that, in premalignant stages, expression of the transactivation-competent p73 isoform TAp73 is triggered in response to pRB pathway alterations. TAp73 expression at this stage of transformation results in increased sensitivity to chemotherapeutic drugs and oxidative stress and inhibits proliferation and survival at high cell density. Importantly, TAp73 triggers a transcriptional programme to prevent anchorage-independent growth, which is considered a crucial hallmark of fully transformed cells. An essential suppressor of anchorage-independent growth is KCNK1, which is directly transactivated by TAp73 and commonly downregulated in glioma, melanoma and ovarian cancer. Oncogenic Ras switches p73 expression from TAp73 to the oncogenic deltaNp73 isoform in a phosphatidyl-inositol 3-kinase-dependent manner. Our results implicate TAp73 as a barrier to anchorage-independent growth and indicate that downregulation of TAp73 is a key transforming activity of oncogenic Ras mutants.


Assuntos
Transformação Celular Neoplásica , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular , Proliferação de Células , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Humanos , Proteínas Nucleares/genética , Análise de Sequência com Séries de Oligonucleotídeos , Proteína Tumoral p73 , Proteínas Supressoras de Tumor/genética
5.
Nucleic Acids Res ; 36(6): 1900-12, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18267967

RESUMO

The p53 family is known as a family of transcription factors with functions in tumor suppression and development. Whereas the central DNA-binding domain is highly conserved among the three family members p53, p63 and p73, the C-terminal domains (CTDs) are diverse and subject to alternative splicing and post-translational modification. Here we demonstrate that the CTDs strongly influence DNA binding and transcriptional activity: while p53 and the p73 isoform p73gamma have basic CTDs and form weak sequence-specific protein-DNA complexes, the major p73 isoforms have neutral CTDs and bind DNA strongly. A basic CTD has been previously shown to enable sliding along the DNA backbone and to facilitate the search for binding sites in the complex genome. Our experiments, however, reveal that a basic CTD also reduces protein-DNA complex stability, intranuclear mobility, promoter occupancy in vivo, target gene activation and induction of cell cycle arrest or apoptosis. A basic CTD therefore provides both positive and negative regulatory functions presumably to enable rapid switching of protein activity in response to stress. The different DNA-binding characteristics of the p53 family members could therefore reflect their predominant role in the cellular stress response (p53) or developmental processes (p73).


Assuntos
Proteínas de Ligação a DNA/química , Proteínas Nucleares/química , Proteína Supressora de Tumor p53/química , Proteínas Supressoras de Tumor/química , Apoptose , Sítios de Ligação , Ciclo Celular , Linhagem Celular , Núcleo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Difusão , Humanos , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Transcrição Gênica , Proteína Tumoral p73 , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo
6.
Cancer Cell ; 10(4): 281-93, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17045206

RESUMO

The p53 family comprises the tumor suppressor p53 and the structural homologs p63 and p73. How the three family members cooperate in tumor suppression remains unclear. Here, we report different but complementary functions of the individual members for regulating retinoblastoma protein (RB) function during myogenic differentiation. Whereas p53 transactivates the retinoblastoma gene, p63 and p73 induce the cyclin-dependent kinase inhibitor p57 to maintain RB in an active, hypophosphorylated state. DeltaNp73 inhibits these functions of the p53 family in differentiation control, prevents myogenic differentiation, and enables cooperating oncogenes to transform myoblasts to tumorigenicity. DeltaNp73 is frequently overexpressed in rhabdomyosarcoma and essential for tumor progression in vivo. These findings establish differentiation control as a key tumor suppressor activity of the p53 family.


Assuntos
Diferenciação Celular/genética , Genes p53 , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Rabdomiossarcoma/genética , Animais , Linhagem Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Nus , Análise de Sequência com Séries de Oligonucleotídeos , Rabdomiossarcoma/patologia , Proteína Supressora de Tumor p53/análise , Ensaios Antitumorais Modelo de Xenoenxerto
7.
FEBS Lett ; 579(20): 4535-40, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16083878

RESUMO

The autonomously replicating sequence-binding factor 1 (ABF1) from Sacchramoyces cerevisiae is known as a multifunctional DNA binding protein that is involved in transcriptional regulation, DNA-replication, and in restructuring of chromatin via nucleosome remodelling. ABF1 binds to DNA sequences found in ARS elements and in various transcriptional regulatory elements. This led to the early definition of the consensus motive 5'-CGTnnnnnnnGA(G/C)-3'. We have used a SELEX approach to expand and better characterize the DNA sequence requirements of ABF1. Starting from a pool of oligonucleotides randomized at a sequence of 30 nucleotides, we used EMSA to select for sequences with high affinity for ABF1. We obtained the sequences of 106 aptamers after the 15th SELEX round. A 16 nucleotide consensus was derived from this pool by analysis with the motif search programme MEME. Quantitative EMSA experiments verified our experimental approach since binding sequences which were bound with high affinity occurred more often in the pool and resembled the derived consensus to a higher degree. We found DNA sequences that are bound by ABF1 with nearly two-magnitude higher affinity as compared to the hitherto accepted ABF1 consensus sequence. This led us to postulate a strong recognition motive: 5'-TnnCGTnnnnnnTGAT-3'.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Bases/genética , Sítios de Ligação/genética , Sequência Consenso/genética , DNA/metabolismo , Análise Mutacional de DNA , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...