Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34445085

RESUMO

Retinal ganglion cells (RGCs) undergo dendritic pruning in a variety of neurodegenerative diseases, including glaucoma and autosomal dominant optic atrophy (ADOA). Axotomising RGCs by severing the optic nerve generates an acute model of RGC dendropathy, which can be utilized to assess the therapeutic potential of treatments for RGC degeneration. Photobiomodulation (PBM) with red light provided neuroprotection to RGCs when administered ex vivo to wild-type retinal explants. In the current study, we used aged (13-15-month-old) wild-type and heterozygous B6;C3-Opa1Q285STOP (Opa1+/-) mice, a model of ADOA exhibiting RGC dendropathy. These mice were pre-treated with 4 J/cm2 of 670 nm light for five consecutive days before the eyes were enucleated and the retinas flat-mounted into explant cultures for 0-, 8- or 16-h ex vivo. RGCs were imaged by confocal microscopy, and their dendritic architecture was quantified by Sholl analysis. In vivo 670 nm light pretreatment inhibited the RGC dendropathy observed in untreated wild-type retinas over 16 h ex vivo and inhibited dendropathy in ON-center RGCs in wild-type but not Opa1+/- retinas. Immunohistochemistry revealed that aged Opa1+/- RGCs exhibited increased nitrosative damage alongside significantly lower activation of NF-κB and upregulation of DJ-1. PBM restored NF-κB activation in Opa1+/- RGCs and enhanced DJ-1 expression in both genotypes, indicating a potential molecular mechanism priming the retina to resist future oxidative insult. These data support the potential of PBM as a treatment for diseases involving RGC degeneration.


Assuntos
Atrofia Óptica Autossômica Dominante/terapia , Fototerapia , Proteína Desglicase DJ-1/análise , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/efeitos da radiação , Animais , Modelos Animais de Doenças , Luz , Camundongos , Neuroproteção/efeitos da radiação , Atrofia Óptica Autossômica Dominante/patologia , Degeneração Retiniana , Células Ganglionares da Retina/citologia , Regulação para Cima/efeitos da radiação
2.
J Med Chem ; 63(22): 13638-13655, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33180495

RESUMO

Leber's hereditary optic neuropathy (LHON) is a rare genetic mitochondrial disease and the primary cause of chronic visual impairment for at least 1 in 10 000 individuals in the U.K. Treatment options remain limited, with only a few drug candidates and therapeutic approaches, either approved or in development. Recently, idebenone has been investigated as drug therapy in the treatment of LHON, although evidence for the efficacy of idebenone is limited in the literature. NAD(P)H:quinone oxidoreductase 1 (NQO1) and mitochondrial complex III were identified as the major enzymes involved in idebenone activity. Based on this mode of action, computer-aided techniques and structure-activity relationship (SAR) optimization studies led to the discovery of a series naphthoquinone-related small molecules, with comparable adenosine 5'-triphosphate (ATP) rescue activity to idebenone. Among these, three compounds showed activity in the nanomolar range and one, 2-((4-fluoro-3-(trifluoromethyl)phenyl)amino)-3-(methylthio)naphthalene-1,3-dione (1), demonstrated significantly higher potency ex vivo, and significantly lower cytotoxicity, than idebenone.


Assuntos
Naftoquinonas/química , Naftoquinonas/uso terapêutico , Atrofia Óptica Hereditária de Leber/tratamento farmacológico , Atrofia Óptica Hereditária de Leber/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Feminino , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular/métodos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Naftoquinonas/farmacologia , Atrofia Óptica Hereditária de Leber/patologia , Preparações Farmacêuticas , Resultado do Tratamento
3.
Mitochondrion ; 36: 85-95, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28499983

RESUMO

Absorption of photon energy by neuronal mitochondria leads to numerous downstream neuroprotective effects. Red and near infrared (NIR) light are associated with significantly less safety concerns than light of shorter wavelengths and they are therefore, the optimal choice for irradiating the retina. Potent neuroprotective effects have been demonstrated in various models of retinal damage, by red/NIR light, with limited data from human studies showing its ability to improve visual function. Improved neuronal mitochondrial function, increased blood flow to neural tissue, upregulation of cell survival mediators and restoration of normal microglial function have all been proposed as potential underlying mechanisms of red/NIR light.


Assuntos
Luz , Mitocôndrias/efeitos da radiação , Doenças Neurodegenerativas/radioterapia , Doenças Retinianas/radioterapia , Animais , Modelos Animais de Doenças , Humanos
4.
Photochem Photobiol ; 92(4): 624-31, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27276065

RESUMO

Red light has been shown to provide neuroprotective effects. Axotomizing the optic nerve initiates retinal ganglion cell (RGC) degeneration, and an early marker of this is dendritic pruning. We hypothesized that 670 nm light can delay axotomy-induced dendritic pruning in the retinal explant. To test this hypothesis, we monitored the effects of 670 nm light (radiant exposure of 31.7 J cm(-2) ), on RGC dendritic pruning in retinal explants from C57BL/6J mice, at 40 min, 8 h and 16 h post axotomy. For sham-treated retinae, area under the Sholl curve, peak of the Sholl curve and dendritic length at 8 h post axotomy showed statistically significant reductions by 42.3% (P = 0.008), 29.8% (P = 0.007) and 38.4% (P = 0.038), respectively, which were further reduced after 16 h by 40.56% (P < 0.008), 33.9% (P < 0.007), 45.43% (P < 0.006), respectively. Dendritic field area was also significantly reduced after 16 h, by 44.23% (P < 0.019). Such statistically significant reductions were not seen in light-treated RGCs at 8 or 16 h post axotomy. The results demonstrate the ability of 670 nm light to partially prevent ex vivo dendropathy in the mouse retina, suggesting that it is worth exploring as a treatment option for dendropathy-associated neurodegenerative diseases, including glaucoma and Alzheimer's disease.


Assuntos
Axotomia , Degeneração Neural , Células Ganglionares da Retina/efeitos da radiação , Animais , Dendritos/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fotoquimioterapia , Retina/citologia , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...