Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 333: 121985, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301455

RESUMO

In aquatic ecosystems, microalgae are exposed to light fluctuations at different frequencies due to daily and seasonal changes. Although concentrations of herbicides are lower in Arctic than in temperate regions, atrazine and simazine, are increasingly found in northern aquatic systems because of long-distance aerial dispersal of widespread applications in the south and antifouling biocides used on ships. The toxic effects of atrazine on temperate microalgae are well documented, but very little is known about their effects on Arctic marine microalgae in relation to their temperate counterparts after light adaptation to variable light intensities. We therefore investigated the impacts of atrazine and simazine on photosynthetic activity, PSII energy fluxes, pigment content, photoprotective ability (NPQ), and reactive oxygen species (ROS) content under three light intensities. The goal was to better understand differences in physiological responses to light fluctuations between Arctic and temperate microalgae and to determine how these different characteristics affect their responses to herbicides. The Arctic diatom Chaetoceros showed stronger light adaptation capacity than the Arctic green algae Micromonas. Atrazine and simazine inhibited the growth and photosynthetic electron transport, affected the pigment content, and disturbed the energy balance between light absorption and utilization. As a result, during high light adaptation and in the presence of herbicides, photoprotective pigments were synthesized and NPQ was highly activated. Nevertheless, these protective responses were insufficient to prevent oxidative damage caused by herbicides in both species from both regions, but at different extent depending on the species. Our study demonstrates that light is important in regulating herbicide toxicity in both Arctic and temperate microalgal strains. Moreover, eco-physiological differences in light responses are likely to support changes in the algal community, especially as the Arctic ocean becomes more polluted and bright with continued human impacts.


Assuntos
Atrazina , Clorófitas , Herbicidas , Microalgas , Poluentes Químicos da Água , Humanos , Herbicidas/toxicidade , Simazina/farmacologia , Ecossistema , Poluentes Químicos da Água/toxicidade
2.
Sci Total Environ ; 884: 163811, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121330

RESUMO

Understanding the environmental conditions and taxa that promote the occurrence of cyanobacterial toxins is imperative for effective management of lake ecosystems. Herein, we modeled total microcystin presence and concentrations with a broad suite of environmental predictors and cyanobacteria community data collected across 440 Canadian lakes using standardized methods. We also conducted a focused analysis targeting 14 microcystin congeners across 190 lakes, to examine how abiotic and biotic factors influence their relative proportions. Microcystins were detected in 30 % of lakes, with the highest total concentrations occurring in the most eutrophic lakes located in ecozones of central Canada. The two most commonly detected congeners were MC-LR (61 % of lakes) and MC-LA (37 % of lakes), while 11 others were detected more sporadically across waterbodies. Congener diversity peaked in central Canada where cyanobacteria biomass was highest. Using a zero-altered hurdle model, the probability of detecting microcystin was best explained by increasing Microcystis biomass, Daphnia and cyclopoid biomass, soluble reactive phosphorus, pH and wind. Microcystin concentrations increased with the biomass of Microcystis and other less dominant cyanobacteria taxa, as well as total phosphorus, cyclopoid copepod biomass, dissolved inorganic carbon and water temperature. Collectively, these models accounted for 34 % and 70 % of the variability, respectively. Based on a multiple factor analysis of microcystin congeners, cyanobacteria community data, environmental and zooplankton data, we found that the relative abundance of most congeners varied according to trophic state and were related to a combination of cyanobacteria genera biomasses and environmental variables.


Assuntos
Cianobactérias , Microcystis , Microcistinas/análise , Lagos/microbiologia , Ecossistema , Canadá , Monitoramento Ambiental
3.
Aquat Toxicol ; 254: 106323, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36435012

RESUMO

Polar ecosystems play an important role in global primary production. Microalgae have adaptations that enable them to live under low temperature environments where irradiance and day length change drastically. Their adaptations, leading to different ecophysiological characteristics relative to temperate species, could also alter their sensitivity to pollutants such as pesticides. This study's objective was to understand how different ecophysiological characteristics influence the response of Arctic phytoplankton to pesticides in relation to the responses of their temperate counterparts. Ecophysiological endpoints were related to growth, cell biovolume, pigment content, photosynthetic activity, photoprotective mechanisms (NPQ, antioxidant enzyme activities), and reactive oxygen species (ROS) content. The Arctic species Micromonas polaris was more resistant to atrazine and simazine than its temperate counterpart Micromonas bravo. However, the other Arctic species Chaetoceros neogracilis was more sensitive to these herbicides than its temperate counterpart Chaetoceros neogracile. With respect to two other pesticide toxicity, both temperate microalgae were more sensitive to trifluralin, while Arctic microalgae were more sensitive to chlorpyrifos (insecticide). All differences could be ascribed to differences in the eco-physiological features of the two microalgal groups, which can be explained by cell size, pigment content, ROS content and protective mechanisms (NPQ and antioxidant enzymes).


Assuntos
Clorófitas , Microalgas , Praguicidas , Poluentes Químicos da Água , Praguicidas/toxicidade , Praguicidas/análise , Espécies Reativas de Oxigênio , Antioxidantes , Ecossistema , Poluentes Químicos da Água/toxicidade
4.
Harmful Algae ; 113: 102187, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35287928

RESUMO

Accurately identifying the species present in an ecosystem is vital to lake managers and successful bioassessment programs. This is particularly important when monitoring cyanobacteria, as numerous taxa produce toxins and can have major negative impacts on aquatic ecosystems. Increasingly, DNA-based techniques such as metabarcoding are being used for measuring aquatic biodiversity, as they could accelerate processing time, decrease costs and reduce some of the biases associated with traditional light microscopy. Despite the continuing use of traditional microscopy and the growing use of DNA metabarcoding to identify cyanobacteria assemblages, methodological comparisons between the two approaches have rarely been reported from a wide suite of lake types. Here, we compare planktonic cyanobacteria assemblages generated by inverted light microscopy and DNA metabarcoding from a 379-lake dataset spanning a longitudinal and trophic gradient. We found moderate levels of congruence between methods at the broadest taxonomic levels (i.e., Order, RV=0.40, p < 0.0001). This comparison revealed distinct cyanobacteria communities from lakes of different trophic states, with Microcystis, Aphanizomenon and Dolichospermum dominating with both methods in eutrophic and hypereutrophic sites. This finding supports the use of either method when monitoring eutrophication in lake surface waters. The biggest difference between the two methods was the detection of picocyanobacteria, which are typically underestimated by light microscopy. This reveals that the communities generated by each method currently are complementary as opposed to identical and promotes a combined-method strategy when monitoring a range of trophic systems. For example, microscopy can provide measures of cyanobacteria biomass, which are critical data in managing lakes. Going forward, we believe that molecular genetic methods will be increasingly adopted as reference databases are routinely updated with more representative sequences and will improve as cyanobacteria taxonomy is resolved with the increase in available genetic information.


Assuntos
Cianobactérias , Lagos , Cianobactérias/genética , DNA , Código de Barras de DNA Taxonômico , Ecossistema , Lagos/microbiologia , Microscopia
5.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35193976

RESUMO

Human-induced salinization caused by the use of road deicing salts, agricultural practices, mining operations, and climate change is a major threat to the biodiversity and functioning of freshwater ecosystems. Yet, it is unclear if freshwater ecosystems are protected from salinization by current water quality guidelines. Leveraging an experimental network of land-based and in-lake mesocosms across North America and Europe, we tested how salinization-indicated as elevated chloride (Cl-) concentration-will affect lake food webs and if two of the lowest Cl- thresholds found globally are sufficient to protect these food webs. Our results indicated that salinization will cause substantial zooplankton mortality at the lowest Cl- thresholds established in Canada (120 mg Cl-/L) and the United States (230 mg Cl-/L) and throughout Europe where Cl- thresholds are generally higher. For instance, at 73% of our study sites, Cl- concentrations that caused a ≥50% reduction in cladoceran abundance were at or below Cl- thresholds in Canada, in the United States, and throughout Europe. Similar trends occurred for copepod and rotifer zooplankton. The loss of zooplankton triggered a cascading effect causing an increase in phytoplankton biomass at 47% of study sites. Such changes in lake food webs could alter nutrient cycling and water clarity and trigger declines in fish production. Current Cl- thresholds across North America and Europe clearly do not adequately protect lake food webs. Water quality guidelines should be developed where they do not exist, and there is an urgent need to reassess existing guidelines to protect lake ecosystems from human-induced salinization.


Assuntos
Guias como Assunto , Lagos , Salinidade , Qualidade da Água , Animais , Efeitos Antropogênicos , Ecossistema , Europa (Continente) , América do Norte , Zooplâncton
6.
Trends Ecol Evol ; 37(5): 454-467, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35065823

RESUMO

The biodiversity-ecosystem functioning concept asserts that processes in ecosystems are markedly influenced by species richness and other facets of biodiversity. However, biodiversity-ecosystem functioning studies have been largely restricted to single ecosystems, ignoring the importance of functional links - such as the exchange of matter, energy, and organisms - between coupled ecosystems. Here we present a basic concept and outline three pathways of cross-boundary biodiversity effects on ecosystem processes and propose an agenda to assess such effects, focusing on terrestrial-aquatic linkages to illustrate the case. This cross-boundary perspective of biodiversity-ecosystem functioning relationships presents a promising frontier for biodiversity and ecosystem science with repercussions for the conservation, restoration, and management of biodiversity and ecosystems from local to landscape scales.


Assuntos
Biodiversidade , Ecossistema
7.
Microorganisms ; 9(12)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34946049

RESUMO

In phytoplankton communities, competitive exclusion might occur when functionally similar species are impeded from regulating their positions along light and nutrient gradients to reduce niche overlap. Greater spatial overlap (SO) between species due to water column mixing could thus promote competitive exclusion, reducing community taxonomic diversity. However, greater SO could also promote coexistence of functionally different taxa. Using data from a whole-lake experiment, we investigated the effects of SO and other relevant environmental factors on phytoplankton diversity across the water columns of lake basins with different thermocline manipulations. We estimated SO using an in situ fluorometer, and overall community diversity microscopically. Using structured equation models, we estimated directional relationships between phytoplankton diversity, SO, the lake physical structure and the zooplankton community. No significant effect of SO on phytoplankton taxonomic diversity was observed, but higher SO was associated with greater functional diversity. Change in lake physical structure and in the zooplankton community also affected diversity, with a negative response to increased top-down interactions. Overall, despite the fact that the alteration of water column stratification structure and top-down interactions were stronger drivers of phytoplankton diversity in our system, some effect of spatial overlap on the outcome of inferred competitive interactions were observable.

8.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34810251

RESUMO

Global climate warming is causing the loss of freshwater ice around the Northern Hemisphere. Although the timing and duration of ice covers are known to regulate ecological processes in seasonally ice-covered ecosystems, the consequences of shortening winters for freshwater biota are poorly understood owing to the scarcity of under-ice research. Here, we present one of the first in-lake experiments to postpone ice-cover onset (by ≤21 d), thereby extending light availability (by ≤40 d) in early winter, and explicitly demonstrate cascading effects on pelagic food web processes and phenologies. Delaying ice-on elicited a sequence of events from winter to spring: 1) relatively greater densities of algal resources and primary consumers in early winter; 2) an enhanced prevalence of winter-active (overwintering) consumers throughout the ice-covered period, associated with augmented storage of high-quality fats likely due to a longer access to algal resources in early winter; and 3) an altered trophic structure after ice-off, with greater initial springtime densities of overwintering consumers driving stronger, earlier top-down regulation, effectively reducing the spring algal bloom. Increasingly later ice onset may thus promote consumer overwintering, which can confer a competitive advantage on taxa capable of surviving winters upon ice-off; a process that may diminish spring food availability for other consumers, potentially disrupting trophic linkages and energy flow pathways over the subsequent open-water season. In considering a future with warmer winters, these results provide empirical evidence that may help anticipate phenological responses to freshwater ice loss and, more broadly, constitute a case of climate-induced cross-seasonal cascade on realized food web processes.


Assuntos
Cadeia Alimentar , Gelo , Plâncton/fisiologia , Estações do Ano , Animais , Biomarcadores , Clima , Mudança Climática , Ecossistema , Eutrofização , Água Doce , Camada de Gelo , Lagos , Modelos Lineares , Fotossíntese , Fitoplâncton , Quebeque , Fatores de Tempo , Zooplâncton
9.
Ecol Appl ; 31(7): e02423, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34288209

RESUMO

Anthropogenic environmental change is causing habitat deterioration at unprecedented rates in freshwater ecosystems. Despite increasing more rapidly than many other agents of global change, synthetic chemical pollution-including agrochemicals such as pesticides-has received relatively little attention in freshwater community and ecosystem ecology. Determining the combined effects of multiple agrochemicals on complex biological systems remains a major challenge, requiring a cross-field integration of ecology and ecotoxicology. Using a large-scale array of experimental ponds, we investigated the response of zooplankton community properties (biomass, composition, and diversity metrics) to the individual and joint presence of three globally widespread agrochemicals: the herbicide glyphosate, the neonicotinoid insecticide imidacloprid, and nutrient fertilizers. We tracked temporal variation in zooplankton biomass and community structure along single and combined pesticide gradients (each spanning eight levels), under low (mesotrophic) and high (eutrophic) nutrient-enriched conditions, and quantified (1) response threshold concentrations, (2) agrochemical interactions, and (3) community resistance and recovery. We found that the biomass of major zooplankton groups differed in their sensitivity to pesticides: ≥0.3 mg/L glyphosate elicited long-lasting declines in rotifer communities, both pesticides impaired copepods (≥3 µg/L imidacloprid and ≥5.5 mg/L glyphosate), whereas some cladocerans were highly tolerant to pesticide contamination. Strong interactive effects of pesticides were only recorded in ponds treated with the combination of the highest doses. Overall, glyphosate was the most influential driver of aggregate community properties of zooplankton, with biomass and community structure responding rapidly but recovering unequally over time. Total community biomass showed little resistance when first exposed to glyphosate, but rapidly recovered and even increased with glyphosate concentration over time; in contrast, taxon richness decreased in more contaminated ponds but failed to recover. Our results indicate that the biomass of tolerant taxa compensated for the loss of sensitive species after the first exposure, conferring greater community resistance upon a subsequent contamination event; a case of pollution-induced community tolerance in freshwater animals. These findings suggest that zooplankton biomass may be more resilient to agrochemical pollution than community structure; yet all community properties measured in this study were affected at glyphosate concentrations below common water quality guidelines in North America.


Assuntos
Poluentes Químicos da Água , Zooplâncton , Agroquímicos , Animais , Biomassa , Ecossistema , Água Doce , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
10.
Mol Ecol ; 30(19): 4771-4788, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34324752

RESUMO

Agricultural pollution with fertilizers and pesticides is a common disturbance to freshwater biodiversity. Bacterioplankton communities are at the base of aquatic food webs, but their responses to these potentially interacting stressors are rarely explored. To test the extent of resistance and resilience in bacterioplankton communities faced with agricultural stressors, we exposed freshwater mesocosms to single and combined gradients of two commonly used pesticides: the herbicide glyphosate (0-15 mg/L) and the neonicotinoid insecticide imidacloprid (0-60 µg/L), in high or low nutrient backgrounds. Over the 43-day experiment, we tracked variation in bacterial density with flow cytometry, carbon substrate use with Biolog EcoPlates, and taxonomic diversity and composition with environmental 16S rRNA gene amplicon sequencing. We show that only glyphosate (at the highest dose, 15 mg/L), but not imidacloprid, nutrients, or their interactions measurably changed community structure, favouring members of the Proteobacteria including the genus Agrobacterium. However, no change in carbon substrate use was detected throughout, suggesting functional redundancy despite taxonomic changes. We further show that communities are resilient at broad, but not fine taxonomic levels: 24 days after glyphosate application the precise amplicon sequence variants do not return, and tend to be replaced by phylogenetically close taxa. We conclude that high doses of glyphosate - but still within commonly acceptable regulatory guidelines - alter freshwater bacterioplankton by favouring a subset of higher taxonomic units (i.e., genus to phylum) that transiently thrive in the presence of glyphosate. Longer-term impacts of glyphosate at finer taxonomic resolution merit further investigation.


Assuntos
Organismos Aquáticos , Água Doce , Bactérias/genética , Biodiversidade , RNA Ribossômico 16S/genética
11.
Sci Total Environ ; 776: 145948, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33647654

RESUMO

The implementation of environmental monitoring programs in areas under anthropogenic pressure is essential to investigate the processes that generate and maintain biodiversity in ecosystems and to establish the most appropriate conservation strategies according to the area. We investigated whether environmental variables or temporal scale influenced zooplankton spatial diversity and beta diversity components in the Madeira River basin (Amazon tributary, Rondônia state, Brazil) from 2009 to 2015. We also investigated the local site contribution to overall beta diversity (LCBD) and to each of its components, to be able to propose conservation strategies more suitable for the river basin. Alpha diversity values decreased over time, while total beta diversity and the abundance difference component increased. A pattern of abundance difference (Podani family) dominated spatial beta diversity within the major sampling campaigns (at each time point). Environmental variables and heterogeneity, temporal scale (sampling campaigns), and also the dam installation contributed to variation in spatial beta diversity and its components. On the other hand, the flood pulse did not influence spatial beta diversity over time. Few sites contributed significantly to beta diversity prior dam installation, but most sites contributed significantly to beta diversity values at least at one point in time, in the post-dam phase. Thus, post-damming, all sites should continue to be monitored for conservation and restoration of zooplankton communities and biodiversity preservation, as changes are likely to still occur. Analysis of beta diversity, its components, and LCBD, are useful and efficient methods to study spatio-temporal changes in communities and identify critical sites. Impoundment and environmental variation significantly affect zooplankton community beta diversity, dependent on underlying mechanisms such as substitution or abundance differences that diversify communities spatially and temporally.


Assuntos
Rios , Zooplâncton , Animais , Biodiversidade , Brasil , Ecossistema
12.
Ecology ; 102(1): e03224, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33067865

RESUMO

Theory predicts that population genetic structure and metacommunity structure are linked by the common processes of drift and migration, but how population genetic structure and metacommunity structure are related in nature is still unknown. Deeper understanding of the processes influencing both genetic and community diversity is vital for better predicting how environmental change will impact biodiversity patterns. We examined how crustacean zooplankton and rotifer species' metapopulation genetic structure and metacommunities respond to environmental and spatial variation both within and across four regions of boreal Canada. Metapopulation and metacommunity variation partitioning results were compared within and across the four regions. Metapopulations and metacommunities responded differently to environmental variation and spatial structure both within and across regions, as metapopulations were influenced by different environmental variables compared to metacommunities. At larger spatial scales both metapopulations and metacommunities exhibited greater spatial and environmental structuring, again responding to a different subset of environmental variables. Our findings suggest that even though both genetic and species diversity are linked by the same processes, regional variation in environmental characteristics and spatial structure influence resulting biodiversity patterns differently. To date, no other empirical research has explored relationships between entire metapopulation and metacommunity assemblages at large regional spatial scales.


Assuntos
Ecossistema , Zooplâncton , Animais , Biodiversidade , Canadá , Água Doce
13.
Nat Ecol Evol ; 4(4): 578-588, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32123321

RESUMO

Community rescue occurs when ecological or evolutionary processes restore positive growth in a highly stressful environment that was lethal to the community in its ancestral form, thus averting biomass collapse in a deteriorating environment. Laboratory evidence suggests that community rescue is most likely in high-biomass communities that have previously experienced moderate doses of sublethal stress. We assessed this result under more natural conditions, in a mesocosm experiment with phytoplankton communities exposed to the ubiquitous herbicide glyphosate. We tested whether community biomass and prior herbicide exposure would facilitate community rescue after severe contamination. We found that prior exposure to glyphosate was a very strong predictor of the rescue outcome, while high community biomass was not. Furthermore, although glyphosate had negative effects on diversity, it did not influence community composition significantly, suggesting a modest role for genus sorting in this rescue process. Our results expand the scope of community rescue theory to complex ecosystems and confirm that prior stress exposure is a key predictor of rescue.


Assuntos
Herbicidas , Poluentes Químicos da Água , Biomassa , Ecossistema , Fitoplâncton
14.
J Plankton Res ; 42(2)2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34366500

RESUMO

For biomonitoring of aquatic ecosystems, the use of coarse group classifications, either taxonomic or functional, has been proposed as an alternative to more highly resolved taxonomic identification. We tested this proposition for phytoplankton and zooplankton using a pan-United States dataset, which also allows us to investigate biogeographic relationships between plankton groups and environmental variables. We used data from 1010 lakes composing the 2012 US National Lakes Assessment and compared relationships derived using genus-level, more aggregated taxonomic resolution and functional types. We examined responses nationally and by ecoregion. Differences in plankton assemblages among ecoregions were detected, especially at genus-level classification. Our analyses show a gradient of altitude and temperature influencing both phytoplankton and zooplankton, and another gradient of nutrients and anthropogenic activity influencing mostly phytoplankton. The overall variation in the planktonic communities explained by environmental variables ranged from 4 to 22%, but together indicated that aggregated taxonomic classification performed better for phytoplankton; for zooplankton, the performance of different classification types depended on the ecoregion. Our analyses also revealed linkages between particular phytoplankton and zooplankton groups, mainly attributable to similar environmental responses and trophic interactions. Overall, the results support the applicability of coarse classifications to infer general responses of plankton communities to environmental drivers.

15.
Sci Total Environ ; 695: 133668, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31419692

RESUMO

The distribution and quality of water resources vary dramatically across Canada, and human impacts such as land-use and climate changes are exacerbating uncertainties in water supply and security. At the national level, Canada has no enforceable standards for safe drinking water and no comprehensive water-monitoring program to provide detailed, timely reporting on the state of water resources. To provide Canada's first national assessment of lake health, the NSERC Canadian Lake Pulse Network was launched in 2016 as an academic-government research partnership. LakePulse uses traditional approaches for limnological monitoring as well as state-of-the-art methods in the fields of genomics, emerging contaminants, greenhouse gases, invasive pathogens, paleolimnology, spatial modelling, statistical analysis, and remote sensing. A coordinated sampling program of about 680 lakes together with historical archives and a geomatics analysis of over 80,000 lake watersheds are used to examine the extent to which lakes are being altered now and in the future, and how this impacts aquatic ecosystem services of societal importance. Herein we review the network context, objectives and methods.

16.
Proc Biol Sci ; 286(1904): 20190856, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31185868

RESUMO

Community rescue occurs when a community that experiences lethal stress persists only through the spread of rare types, either genotypes or species, resistant to the stress. Rescue interacts with trophic structure because physical stress experienced by a focal assemblage within the community may also be experienced by its predators and prey. In general, trophic structure will facilitate rescue only when a stress has a less severe effect on a focal assemblage than on its predators. In other circumstances, when stress affects prey or has only a weak effect on predators, trophic structure is likely to hamper rescue. We exposed a community of phytoplankton and zooplankton derived from a natural lake to acidification in outdoor mesocosms large enough to support trophically complex communities. Rescue of the phytoplankton from severe acidification was facilitated by prior exposure to sublethal stress, confirming previous results from microcosm experiments. Even communities that have previously been less highly stressed were eventually rescued, however, because their zooplankton predators were more sensitive to acidification and became extinct. Our experiment shows how community rescue following severe stress is modulated by the differential effect of the stress relative to trophic level.


Assuntos
Cadeia Alimentar , Estresse Fisiológico , Animais , Ecossistema , Concentração de Íons de Hidrogênio , Fitoplâncton/fisiologia , Dinâmica Populacional , Zooplâncton/fisiologia
17.
FEMS Microbiol Ecol ; 94(8)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29912326

RESUMO

Freshwater bacterioplankton communities are influenced by the inputs of material and bacteria from the surrounding landscape, yet few studies have investigated how different terrestrial inputs affect bacterioplankton. We examined whether the addition of soils collected under various tree species combinations differentially influences lake bacterial communities. Lake water was incubated for 6 days following addition of five different soils. We assessed the taxonomic composition (16S rRNA gene sequencing) and metabolic activity (Biolog Ecoplates) of lake bacteria with and without soil addition, and compared these to initial soil communities. Soil bacterial assemblages showed a strong influence of tree composition, but such community differences were not reflected in the structure of lake communities that developed during the experiment. Bacterial taxa showing the largest abundance increases during incubation were initially present in both lake water and across most soils, and were related to Cytophagales, Burkholderiales and Rhizobiales. No clear metabolic profiles based on inoculum source were found, yet soil-amended communities used 60% more substrate than non-inoculated communities. Overall, we show that terrestrial inputs influence aquatic communities by stimulating the growth and activity of certain ubiquitous taxa distributed across the terrestrial-aquatic continuum, yet different forest soils did not cause predictable changes in lake bacterioplankton assemblages.


Assuntos
Bacteroidetes/classificação , Burkholderiales/classificação , Lagos/microbiologia , Plâncton/microbiologia , Rhizobiaceae/classificação , Microbiologia do Solo , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Organismos Aquáticos/isolamento & purificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Burkholderiales/genética , Burkholderiales/isolamento & purificação , Florestas , RNA Ribossômico 16S/genética , Rhizobiaceae/genética , Rhizobiaceae/isolamento & purificação , Solo/química , Árvores/genética , Árvores/microbiologia
18.
Environ Microbiol ; 20(7): 2568-2584, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29921005

RESUMO

Northern lakes are ice-covered for a large part of the year, yet our understanding of microbial diversity and activity during winter lags behind that of the ice-free period. In this study, we investigated under-ice diversity and metabolism of Verrucomicrobia in seasonally ice-covered lakes in temperate and boreal regions of Quebec, Canada using 16S rRNA sequencing, metagenomics and metatranscriptomics. Verrucomicrobia, particularly the V1, V3 and V4 subdivisions, were abundant during ice-covered periods. A diversity of Verrucomicrobia genomes were reconstructed from Quebec lake metagenomes. Several genomes were associated with the ice-covered period and were represented in winter metatranscriptomes, supporting the notion that Verrucomicrobia are metabolically active under ice. Verrucomicrobia transcriptome analysis revealed a range of metabolisms potentially occurring under ice, including carbohydrate degradation, glycolate utilization, scavenging of chlorophyll degradation products, and urea use. Genes for aerobic sulfur and hydrogen oxidation were expressed, suggesting chemolithotrophy may be an adaptation to conditions where labile carbon may be limited. The expression of genes for flagella biosynthesis and chemotaxis was detected, suggesting Verrucomicrobia may be actively sensing and responding to winter nutrient pulses, such as phytoplankton blooms. These results increase our understanding on the diversity and metabolic processes occurring under ice in northern lakes ecosystems.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.


Assuntos
Variação Genética , Camada de Gelo/microbiologia , Lagos/microbiologia , Metagenoma , Verrucomicrobia/genética , Canadá , Ecossistema , Genoma Bacteriano , Fitoplâncton , RNA Ribossômico 16S , Estações do Ano , Microbiologia da Água
19.
Ecol Lett ; 20(11): 1395-1404, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29044973

RESUMO

Recent experimental evidence suggests that changes in the partial pressure of CO2 (pCO2 ), in concert with nutrient fertilisation, may result in increased primary production and shifted phytoplankton community composition that favours species lacking adaptations to low CO2 environments. It is not clear whether these results apply in ambient freshwaters, which are already often supersaturated in CO2 , and where phytoplankton structure and activity are under complex control of diverse local and regional factors. Here, we use a large-scale comparative study of 69 boreal lakes to explore the influence of existing CO2 gradients (c. 50-2300 µatm) on phytoplankton community composition and biomass production. While community composition did not respond to pCO2 gradients, gross primary production was enhanced, but only in lakes already supersaturated in CO2 , demonstrating that environmental context is key in determining pCO2 -phytoplankton interactions. We further argue that increased atmospheric CO2 is unlikely to influence phytoplanktonic composition and production in northern lakes.


Assuntos
Biomassa , Dióxido de Carbono/metabolismo , Lagos/química , Fitoplâncton/crescimento & desenvolvimento , Água/química , Fitoplâncton/metabolismo
20.
Ecology ; 97(4): 1069-80, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27220222

RESUMO

The use of functional traits to characterize community composition has been proposed as a more effective way to link community structure to ecosystem functioning. Organismal morphology, body stoichiometry, and physiology can be readily linked to large-scale ecosystem processes through functional traits that inform on interspecific and species-environment interactions; yet such effect traits are still poorly included in trait-based approaches. Given their key trophic position in aquatic ecosystems, individual zooplankton affect energy fluxes and elemental processing. We compiled a large database of zooplankton traits contributing to carbon, nitrogen, and phosphorus cycling and examined the effect of classification and habitat (marine vs. freshwater) on trait relationships. Respiration and nutrient excretion rates followed mass-dependent scaling in both habitats, with exponents ranging from 0.70 to 0.90. Our analyses revealed surprising differences in allometry and respiration between habitats, with freshwater species having lower length-specific mass and three times higher mass-specific respiration rates. These differences in traits point to implications for ecological strategies as well as overall carbon storage and fluxes based on habitat type. Our synthesis quantifies multiple trait relationships and links organisms to ecosystem processes they influence, enabling a more complete integration of aquatic community ecology and biogeochemistry through the promising use of effect traits.


Assuntos
Ecossistema , Zooplâncton/fisiologia , Animais , Tamanho Corporal , Crustáceos/classificação , Crustáceos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...