Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Today Bio ; 11: 100120, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34337378

RESUMO

Biominerals formed by organisms in the course of biomineralization often demonstrate complex morphologies despite their single-crystalline nature. This is achieved owing to the crystallization via a predeposited amorphous calcium carbonate (ACC) phase, a precursor that is particularly widespread in biominerals. Inspired by this natural strategy, we used robocasting, an additive manufacturing three-dimensional (3D) printing technique, for printing 3D objects from novel long-term, Mg-stabilized ACC pastes with high solids loading. We demonstrated, for the first time, that the ACC remains stable for at least a couple of months, even after printing. Crystallization, if desired, occurs only after the 3D object is already formed and at temperatures significantly lower than those of common postprinting sintering. We also examined the effects different organic binders have on the crystallization, the morphology, and the final amount of incorporated Mg. This novel bio-inspired method may pave the way for a new bio-inspired route to low-temperature 3D printing of ceramic materials for a multitude of applications.

2.
Nano Lett ; 14(3): 1349-53, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24564833

RESUMO

A new approach for doping of Cu2S nanocrystal arrays using thermal treatment at moderate temperatures (T < 400 K) is presented. This thermal doping process yields conductance enhancement by 6 orders of magnitude. Local probe measurements prove this doping is an intraparticle effect and, moreover, tunneling spectroscopy data signify p-type doping. The doping mechanism is attributed to Cu vacancy formation, resulting in free holes. Thermal-doping temperature dependence exhibits an Arrhenius-like behavior, providing the vacancy formation energy of 1.6 eV. The moderate temperature conditions for thermal doping unique to these nanocrystals allow patterned doping of nanocrystal films through local heating by a focused laser beam, toward fabrication of nanocrystal-based electronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...