Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 29554, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27412821

RESUMO

Synthetic elicitors are drug-like compounds that are structurally distinct from natural defense elicitors. They can protect plants from diseases by activating host immune responses and can serve as tools for the dissection of the plant immune system as well as leads for the development of environmentally-safe pesticide alternatives. By high-throughput screening, we previously identified 114 synthetic elicitors that activate expression of the pathogen-responsive CaBP22(-333)::GUS reporter gene in Arabidopsis thaliana (Arabidopsis), 33 of which are [(phenylimino)methyl]phenol (PMP) derivatives or PMP-related compounds. Here we report on the characterization of one of these compounds, 2,4-dichloro-6-{(E)-[(3-methoxyphenyl)imino]methyl}phenol (DPMP). DPMP strongly triggers disease resistance of Arabidopsis against bacterial and oomycete pathogens. By mRNA-seq analysis we found transcriptional profiles triggered by DPMP to resemble typical defense-related responses.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/imunologia , Iminas/farmacologia , Fenóis/farmacologia , Doenças das Plantas/imunologia , Doenças das Plantas/prevenção & controle , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/imunologia , Proteínas de Arabidopsis/metabolismo , Calmodulina/metabolismo , Resistência à Doença , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hormese/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal , Pseudomonas syringae/patogenicidade , Transcriptoma/efeitos dos fármacos
2.
Plant Physiol ; 170(1): 444-58, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26530314

RESUMO

Synthetic elicitors are drug-like compounds that induce plant immune responses but are structurally distinct from natural defense elicitors. Using high-throughput screening, we previously identified 114 synthetic elicitors that activate the expression of a pathogen-responsive reporter gene in Arabidopsis (Arabidopsis thaliana). Here, we report on the characterization of one of these compounds, 2-(5-bromo-2-hydroxy-phenyl)-thiazolidine-4-carboxylic acid (BHTC). BHTC induces disease resistance of plants against bacterial, oomycete, and fungal pathogens and has a unique mode of action and structure. Surprisingly, we found that low doses of BHTC enhanced root growth in Arabidopsis, while high doses of this compound inhibited root growth, besides inducing defense. These effects are reminiscent of the hormetic response, which is characterized by low-dose stimulatory effects of a wide range of agents that are toxic or inhibitory at higher doses. Like its effects on defense, BHTC-induced hormesis in Arabidopsis roots is partially dependent on the WRKY70 transcription factor. Interestingly, BHTC-induced root hormesis is also affected in the auxin-response mutants axr1-3 and slr-1. By messenger RNA sequencing, we uncovered a dramatic difference between transcriptional profiles triggered by low and high doses of BHTC. Only high levels of BHTC induce typical defense-related transcriptional changes. Instead, low BHTC levels trigger a coordinated intercompartmental transcriptional response manifested in the suppression of photosynthesis- and respiration-related genes in the nucleus, chloroplasts, and mitochondria as well as the induction of development-related nuclear genes. Taken together, our functional characterization of BHTC links defense regulation to hormesis and provides a hypothetical transcriptional scenario for the induction of hormetic root growth.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/imunologia , Hormese , Tiazolidinas/farmacologia , Arabidopsis/microbiologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Clorobenzoatos/química , Clorobenzoatos/farmacologia , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Peronospora/patogenicidade , Doenças das Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Relação Estrutura-Atividade , Tiazolidinas/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , ortoaminobenzoatos/química , ortoaminobenzoatos/farmacologia
3.
Front Plant Sci ; 5: 804, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25674095

RESUMO

To defend themselves against invading pathogens plants utilize a complex regulatory network that coordinates extensive transcriptional and metabolic reprogramming. Although many of the key players of this immunity-associated network are known, the details of its topology and dynamics are still poorly understood. As an alternative to forward and reverse genetic studies, chemical genetics-related approaches based on bioactive small molecules have gained substantial popularity in the analysis of biological pathways and networks. Use of such molecular probes can allow researchers to access biological space that was previously inaccessible to genetic analyses due to gene redundancy or lethality of mutations. Synthetic elicitors are small drug-like molecules that induce plant defense responses, but are distinct from known natural elicitors of plant immunity. While the discovery of some synthetic elicitors had already been reported in the 1970s, recent breakthroughs in combinatorial chemical synthesis now allow for inexpensive high-throughput screens for bioactive plant defense-inducing compounds. Along with powerful reverse genetics tools and resources available for model plants and crop systems, comprehensive collections of new synthetic elicitors will likely allow plant scientists to study the intricacies of plant defense signaling pathways and networks in an unparalleled fashion. As synthetic elicitors can protect crops from diseases, without the need to be directly toxic for pathogenic organisms, they may also serve as promising alternatives to conventional biocidal pesticides, which often are harmful for the environment, farmers and consumers. Here we are discussing various types of synthetic elicitors that have been used for studies on the plant immune system, their modes-of-action as well as their application in crop protection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...