Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5252, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898007

RESUMO

Silicon is indisputably the most advanced material for scalable electronics, but it is a poor choice as a light source for photonic applications, due to its indirect band gap. The recently developed hexagonal Si1-xGex semiconductor features a direct bandgap at least for x > 0.65, and the realization of quantum heterostructures would unlock new opportunities for advanced optoelectronic devices based on the SiGe system. Here, we demonstrate the synthesis and characterization of direct bandgap quantum wells realized in the hexagonal Si1-xGex system. Photoluminescence experiments on hex-Ge/Si0.2Ge0.8 quantum wells demonstrate quantum confinement in the hex-Ge segment with type-I band alignment, showing light emission up to room temperature. Moreover, the tuning range of the quantum well emission energy can be extended using hexagonal Si1-xGex/Si1-yGey quantum wells with additional Si in the well. These experimental findings are supported with ab initio bandstructure calculations. A direct bandgap with type-I band alignment is pivotal for the development of novel low-dimensional light emitting devices based on hexagonal Si1-xGex alloys, which have been out of reach for this material system until now.

2.
ACS Appl Mater Interfaces ; 13(19): 22391-22415, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33834768

RESUMO

CO elimination through oxidation over highly active and cost-effective catalysts is a way forward for many processes of industrial and environmental importance. In this study, doped CeO2 with transition metals (TM = Cu, Co, Mn, Fe, Ni, Zr, and Zn) at a level of 20 at. % was tested for CO oxidation. The oxides were prepared using microwave-assisted sol-gel synthesis to improve catalyst's performance for the reaction of interest. The effect of heteroatoms on the physicochemical properties (structure, morphology, porosity, and reducibility) of the binary oxides M-Ce-O was meticulously investigated and correlated to their CO oxidation activity. It was found that the catalytic activity (per gram basis or TOF, s-1) follows the order Cu-Ce-O > Ce-Co-O > Ni-Ce-O > Mn-Ce-O > Fe-Ce-O > Ce-Zn-O > CeO2. Participation of mobile lattice oxygen species in the CO/O2 reaction does occur, the extent of which is heteroatom-dependent. For that, state-of-the-art transient isotopic 18O-labeled experiments involving 16O/18O exchange followed by step-gas CO/Ar or CO/O2/Ar switches were used to quantify the contribution of lattice oxygen to the reaction. SSITKA-DRIFTS studies probed the formation of carbonates while validating the Mars-van Krevelen (MvK) mechanism. Scanning transmission electron microscopy-high-angle annular dark field imaging coupled with energy-dispersive spectroscopy proved that the elemental composition of dopants in the individual nanoparticle of ceria is less than their composition at a larger scale, allowing the assessment of the doping efficacy. Despite the similar structural features of the catalysts, a clear difference in the Olattice mobility was also found as well as its participation (as expressed with the α descriptor) in the reaction, following the order αCu > αCo> αMn > αZn. Kinetic studies showed that it is rather the pre-exponential (entropic) factor and not the lowering of activation energy that justifies the order of activity of the solids. DFT calculations showed that the adsorption of CO on the Cu-doped CeO2 surface is more favorable (-16.63 eV), followed by Co, Mn, Zn (-14.46, -4.90, and -4.24 eV, respectively), and pure CeO2 (-0.63 eV). Also, copper compensates almost three times more charge (0.37e-) compared to Co and Mn, ca. 0.13e- and 0.10e-, respectively, corroborating for its tendency to be reduced. Surface analysis (X-ray photoelectron spectroscopy), apart from the oxidation state of the elements, revealed a heteroatom-ceria surface interaction (Oa species) of different extents and of different populations of Oa species.

3.
RSC Adv ; 11(5): 2947-2957, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35424234

RESUMO

The adsorption energy and electronic properties of sulfur dioxide (SO2) adsorbed on different low-Miller index cobalt phosphide (CoP) surfaces were examined using density functional theory (DFT). Different surface atomic terminations and initial molecular orientations were systematically investigated in detail to determine the most active and stable surface for use as a hydrotreating catalyst. It was found that the surface catalytic reactivity of CoP and its performance were highly sensitive to the crystal plane, where the surface orientation/termination had a remarkable impact on the interfacial chemical bonding and electronic states toward the adsorption of the SO2 molecule. Specifically, analysis of the surface energy adsorption revealed that SO2 on Co-terminated surfaces, especially in (010), (101) and (110) facets, is energetically more favorable compared to other low index surfaces. Charge density difference, density of states (DOS) and Gibbs free energy studies were also carried out to further understand the bonding mechanism and the electronic interactions with the adsorbate. It is anticipated that the current findings will support experimental research towards the design of catalysts for SO2 hydrodesulfurization based on cobalt phosphide nanoparticles.

4.
Nat Commun ; 10(1): 2610, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31197169

RESUMO

Localized electron spins can couple magnetically via the Ruderman-Kittel-Kasuya-Yosida interaction even if their wave functions lack direct overlap. Theory predicts that spin-orbit scattering leads to a Dzyaloshinskii-Moriya type enhancement of this indirect exchange interaction, giving rise to chiral exchange terms. Here we present a combined spin-polarized scanning tunneling microscopy, angle-resolved photoemission, and density functional theory study of MnO2 chains on Ir(100). Whereas we find antiferromagnetic Mn-Mn coupling along the chain, the inter-chain coupling across the non-magnetic Ir substrate turns out to be chiral with a 120° rotation between adjacent MnO2 chains. Calculations reveal that the Dzyaloshinskii-Moriya interaction results in spin spirals with a periodicity in agreement with experiment. Our findings confirm the existence of indirect chiral magnetic exchange, potentially giving rise to exotic phenomena, such as chiral spin-liquid states in spin ice systems or the emergence of new quasiparticles.

5.
Nat Commun ; 9(1): 1648, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695776

RESUMO

Chiral spin textures of a ferromagnetic layer in contact to a heavy non-magnetic metal, such as Néel-type domain walls and skyrmions, have been studied intensively because of their potential for future nanomagnetic devices. The Dyzaloshinskii-Moriya interaction (DMI) is an essential phenomenon for the formation of such chiral spin textures. In spite of recent theoretical progress aiming at understanding the microscopic origin of the DMI, an experimental investigation unravelling the physics at stake is still required. Here we experimentally demonstrate the close correlation of the DMI with the anisotropy of the orbital magnetic moment and with the magnetic dipole moment of the ferromagnetic metal in addition to Heisenberg exchange. The density functional theory and the tight-binding model calculations reveal that inversion symmetry breaking with spin-orbit coupling gives rise to the orbital-related correlation. Our study provides the experimental connection between the orbital physics and the spin-orbit-related phenomena, such as DMI.

6.
Phys Rev B ; 93(17)2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27441303

RESUMO

We systematically investigate the spin-orbit coupling-induced band splitting originating from inversion symmetry breaking at the interface between a Co monolayer and 4d (Tc, Ru, Rh, Pd, and Ag) or 5d (Re, Os, Ir, Pt, and Au) transition metals. In spite of the complex band structure of these systems, the odd-in-k spin splitting of the bands displays striking similarities with the much simpler Rashba spin-orbit coupling picture. While we do not find salient correlations between the interfacial magnetic anisotropy and the odd-in-k spin-splitting of the bands, we establish a clear connection between the overall strength of the band splitting and the charge transfer between the d-orbitals at the interface. Furthermore, we show that the spin splitting of the Fermi surface scales with the induced orbital moment, weighted by the spin-orbit coupling.

7.
Sci Rep ; 6: 24634, 2016 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-27103448

RESUMO

The search for chiral magnetic textures in systems lacking spatial inversion symmetry has attracted a massive amount of interest in the recent years with the real space observation of novel exotic magnetic phases such as skyrmions lattices, but also domain walls and spin spirals with a defined chirality. The electrical control of these textures offers thrilling perspectives in terms of fast and robust ultrahigh density data manipulation. A powerful ingredient commonly used to stabilize chiral magnetic states is the so-called Dzyaloshinskii-Moriya interaction (DMI) arising from spin-orbit coupling in inversion asymmetric magnets. Such a large antisymmetric exchange has been obtained at interfaces between heavy metals and transition metal ferromagnets, resulting in spin spirals and nanoskyrmion lattices. Here, using relativistic first-principles calculations, we demonstrate that the magnitude and sign of DMI can be entirely controlled by tuning the oxygen coverage of the magnetic film, therefore enabling the smart design of chiral magnetism in ultra-thin films. We anticipate that these results extend to other electronegative ions and suggest the possibility of electrical tuning of exotic magnetic phases.

8.
J Phys Condens Matter ; 25(27): 273201, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23778868

RESUMO

Recently several hexagonal polytypes such as 2H, 4H, and 6H have been discovered for conventional III-V semiconductor compounds in addition to the cubic 3C zinc-blende polytype by investigating nanorods grown in the [111] direction in different temperature regimes. Also III-mononitrides crystallizing in the hexagonal 2H wurtzite structure under ambient conditions can be deposited in zinc-blende geometry using various growth techniques. The polytypic crystal structures influence the local electronic properties and the internal electric fields due to the spontaneous polarization in non-cubic crystals.In this paper we give a comprehensive review on the thermodynamic, structural, and electronic properties of twelve Al, Ga, and In antimonides, arsenides, phosphides, and nitrides as derived from ab initio calculations. Their lattice parameters, energetic stability, and characteristic band structure energies are carefully discussed and related to the atomic geometries of the polytypes. Chemical trends are investigated. Band offsets between polytypes and their consequences for heterocrystalline structures are derived. The described properties are discussed in the light of available experimental data and previous computations. Despite several contradictory results in the literature, a unified picture of the III-V polytypes and their heterocrystalline structures is developed.


Assuntos
Compostos Inorgânicos de Carbono/química , Eletrônica , Metabolismo Energético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...