Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38730707

RESUMO

The development of multiple-drug-resistant (MDR) cancer all too often signals the need for toxic alternative therapy or palliative care. Our recent in vivo and in vitro studies using canine MDR lymphoma cancer cells demonstrate that the Anaphase Promoting Complex (APC) is impaired in MDR cells compared to normal canine control and drug-sensitive cancer cells. Here, we sought to establish whether this phenomena is a generalizable mechanism independent of species, malignancy type, or chemotherapy regime. To test the association of blunted APC activity with MDR cancer behavior, we used matched parental and MDR MCF7 human breast cancer cells, and a patient-derived xenograft (PDX) model of human triple-negative breast cancer. We show that APC activating mechanisms, such as APC subunit 1 (APC1) phosphorylation and CDC27/CDC20 protein associations, are reduced in MCF7 MDR cells when compared to chemo-sensitive matched cell lines. Consistent with impaired APC function in MDR cells, APC substrate proteins failed to be effectively degraded. Similar to our previous observations in canine MDR lymphoma cells, chemical activation of the APC using Mad2 Inhibitor-1 (M2I-1) in MCF7 MDR cells enhanced APC substrate degradation and resensitized MDR cells in vitro to the cytotoxic effects of the alkylating chemotherapeutic agent, doxorubicin (DOX). Using cell cycle arrest/release experiments, we show that mitosis is delayed in MDR cells with elevated substrate levels. When pretreated with M2I-1, MDR cells progress through mitosis at a faster rate that coincides with reduced levels of APC substrates. In our PDX model, mice growing a clinically MDR human triple-negative breast cancer tumor show significantly reduced tumor growth when treated with M2I-1, with evidence of increased DNA damage and apoptosis. Thus, our results strongly support the hypothesis that APC impairment is a driver of aggressive tumor development and that targeting the APC for activation has the potential for meaningful clinical benefits in treating recurrent cases of MDR malignancy.

2.
Methods Mol Biol ; 2196: 229-233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32889725

RESUMO

The budding yeast is a valuable model system for discovering molecular mechanisms underlying cellular aging. This is due to the ease of performing genetic manipulations in yeast and the vast number of evolutionarily conserved genes that have been found to regulate cellular health and lifespan from yeast to humans. Lifespan assays are an essential tool for examining the effects of these genes on longevity. There are two ways lifespan is measured in yeast: replicative lifespan (RLS) and chronological lifespan (CLS). RLS is a measure of how many divisions an individual mother cell will undergo. CLS measures the length of time nondividing cells survive. Previously described CLS assays involved diluting and plating cells of a culture and counting the colonies that arose. While effective, this method is both time and labor intensive. Here, we describe a method for a high-throughput rapid CLS assay that is both time- and cost-efficient.


Assuntos
Senescência Celular , Ensaios de Triagem em Larga Escala , Longevidade , Leveduras/fisiologia , Bioensaio , Análise de Dados , Saccharomyces cerevisiae/fisiologia , Sais de Tetrazólio , Tiazóis
3.
G3 (Bethesda) ; 8(5): 1579-1592, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29519938

RESUMO

The yeast, Saccharomyces cerevisiae, like other higher eukaryotes, undergo a finite number of cell divisions before exiting the cell cycle due to the effects of aging. Here, we show that yeast aging begins with the nuclear exclusion of Hcm1 in young cells, resulting in loss of acidic vacuoles. Autophagy is required for healthy aging in yeast, with proteins targeted for turnover by autophagy directed to the vacuole. Consistent with this, vacuolar acidity is necessary for vacuolar function and yeast longevity. Using yeast genetics and immunofluorescence microscopy, we confirm that vacuolar acidity plays a critical role in cell health and lifespan, and is potentially maintained by a series of Forkhead Box (Fox) transcription factors. An interconnected transcriptional network involving the Fox proteins (Fkh1, Fkh2 and Hcm1) are required for transcription of v-ATPase subunits and vacuolar acidity. As cells age, Hcm1 is rapidly excluded from the nucleus in young cells, blocking the expression of Hcm1 targets (Fkh1 and Fkh2), leading to loss of v-ATPase gene expression, reduced vacuolar acidification, increased α-syn-GFP vacuolar accumulation, and finally, diminished replicative lifespan (RLS). Loss of vacuolar acidity occurs about the same time as Hcm1 nuclear exclusion and is conserved; we have recently demonstrated that lysosomal alkalization similarly contributes to aging in C. elegans following a transition from progeny producing to post-reproductive life. Our data points to a molecular mechanism regulating vacuolar acidity that signals the end of RLS when acidification is lost.


Assuntos
Álcalis/metabolismo , Núcleo Celular/metabolismo , Senescência Celular , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Ácidos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Regulação para Cima/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...