Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 192: 115074, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37236094

RESUMO

The Mar Menor hypersaline coastal lagoon has suffered serious degradation in the last three decades attributable to nutrient pollution. In 2015, the lagoon experienced an intensive bloom of cyanobacteria that triggered a drastic change of its ecosystem. Our analyses indicate that phytoplankton in 2016-2021 did not present a seasonal variability pattern; the community was mainly dominated by diatoms and punctually reached abundance peaks above 107 cell L-1 along with chlorophyll a concentrations exceeding 20 µg L-1. The predominant diatom genera during these blooms were different as well as the nutrient conditions under which they were produced. These high diatom abundances are unprecedented in the lagoon; in fact, our data indicate that the taxonomic composition, time variation patterns and cell abundance of phytoplankton in 2016-2021 differ notably in comparison to the data published before 2015. Consequently, our results support the finding that the trophic status of the lagoon has changed profoundly.


Assuntos
Diatomáceas , Fitoplâncton , Ecossistema , Clorofila A , Monitoramento Ambiental/métodos , Eutrofização
2.
Plants (Basel) ; 12(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36771541

RESUMO

In the Mediterranean, anthropogenic pressures (specifically those involving nutrient loads) have been progressively moved to deeper off-shore areas to meet current policies dealing with the protection of marine biodiversity (e.g., European Directives). However, conservation efforts devoted to protecting Posidonia oceanica and other vulnerable marine habitats against anthropogenic pressures have dedicated very little attention to the deepest areas of these habitats. We studied the remote influence of off-shore nutrient discharge on the physiology and structure of deep P. oceanica meadows located nearest to an urban sewage outfall (WW; 1 km) and an aquaculture facility (FF; 2.5 km). Light reduction and elevated external nutrient availability (as indicated by high δ15N, total N and P content and N uptake rates of seagrass tissues) were consistent with physiological responses to light and nutrient stress. This was particularly evident in the sites located up to 2.5 km from the WW source, where carbon budget imbalances and structural alterations were more evident. These results provide evidence that anthropogenic nutrient inputs can surpass critical thresholds for the species, even in off-shore waters at distances within the km scale. Therefore, the critical distances between this priority habitat and nutrient discharge points have been underestimated and should be corrected to achieve a good conservation status.

3.
Front Microbiol ; 13: 937683, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160249

RESUMO

Coastal marine lagoons are environments highly vulnerable to anthropogenic pressures such as agriculture nutrient loading or runoff from metalliferous mining. Sediment microorganisms, which are key components in the biogeochemical cycles, can help attenuate these impacts by accumulating nutrients and pollutants. The Mar Menor, located in the southeast of Spain, is an example of a coastal lagoon strongly altered by anthropic pressures, but the microbial community inhabiting its sediments remains unknown. Here, we describe the sediment prokaryotic communities along a wide range of environmental conditions in the lagoon, revealing that microbial communities were highly heterogeneous among stations, although a core microbiome was detected. The microbiota was dominated by Delta- and Gammaproteobacteria and members of the Bacteroidia class. Additionally, several uncultured groups such as Asgardarchaeota were detected in relatively high proportions. Sediment texture, the presence of Caulerpa or Cymodocea, depth, and geographic location were among the most important factors structuring microbial assemblages. Furthermore, microbial communities in the stations with the highest concentrations of potentially toxic elements (Fe, Pb, As, Zn, and Cd) were less stable than those in the non-contaminated stations. This finding suggests that bacteria colonizing heavily contaminated stations are specialists sensitive to change.

4.
Mar Pollut Bull ; 164: 111989, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33485014

RESUMO

Monthly samplings carried out in 2016-2019 and satellite color images from 2002 to 2019 have been combined to determine the onset and causative species of the ecosystem disruptive algal bloom (EDAB) that affects the Mar Menor coastal lagoon (Western Mediterranean Sea) since 2015. Substantial changes in satellite spectral reflectance attributable to increasing abundance of Synechococcus were registered in 2014. Furthermore, cell abundances of this species in 2016 were the largest ever obtained in the lagoon (6 106 cells mL-1), with values similar to those reported for other Mediterranean hypertrophic estuaries and coastal lagoons. These results suggest that the early changes leading to the EDAB started in 2014 and that Synechococcus played a relevant role in its development. Moreover, diatom and dinoflagellate abundances changed substantially in 2016-2019, ranging from 102 to more than 104 cells mL-1. Some of these changes were linked to flood, suggesting that EDAB has modified substantially the homeostatic capacity of the lagoon.


Assuntos
Diatomáceas , Dinoflagellida , Ecossistema , Monitoramento Ambiental , Eutrofização , Mar Mediterrâneo , Fitoplâncton , Estações do Ano
5.
Mar Environ Res ; 71(1): 22-30, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20970182

RESUMO

The aim of this work was to study the dispersion of particulate wastes derived from marine fish farming and correlate the data with the impact on the seabed. Carbon and nutrients were correlated with the physico-chemical parameters of the sediment and the benthic community structure. The sedimentation rates in the benthic system were 1.09, 0.09 and 0.13 g m⁻² day⁻¹ for particulate organic carbon (POC), particulate organic nitrogen (PON) and total phosphorus (TP), respectively. TP was a reliable parameter for establishing the spatial extent of the fish farm particulate wastes. Fish farming was seen to influence not only physico-chemical and biological parameters but also the functioning of the ecosystem from a trophic point of view, particularly affecting the grazers and the balance among the trophic groups. POC, PON and TP sedimentation dynamics reflected the physico-chemical status of the sediment along the distance gradient studied, while their impact on the benthic community extended further. Therefore, the level of fish farm impact on the benthic community might be underestimated if it is assessed by merely taking into account data obtained from waste dispersion rates. The benthic habitat beneath the fish farm, Maërl bed, was seen to be very sensitive to aquaculture impact compared with other unvegetated benthic habitats, with an estimated POC-carrying capacity to maintain current diversity of 0.087 g C m⁻² day⁻¹ (only 36% greater than the basal POC input). Environmental protection agencies should define different aquaculture waste load thresholds for different benthic communities affected by finfish farming, according to their particular degree of sensitivity, in order to maintain natural ecosystem functions.


Assuntos
Aquicultura , Monitoramento Ambiental , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Carbono/análise , Ecossistema , Meio Ambiente , Mar Mediterrâneo , Nitrogênio/análise , Fósforo/análise , Água do Mar/química , Movimentos da Água , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...