Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 10(30): 14480-14491, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30022216

RESUMO

An understanding of the adaptation of the crystal structure of materials confined at the nanoscale, the influences of their specific structures on the evolution of their morphologies and, finally, their functional properties is essential not only for expanding fundamental knowledge, but also for facilitating the designs of novel nanostructures for diverse technological and medical applications. Here we describe how the distinct structure of barium-hexaferrite nanoplatelets evolves in a stepwise manner in parallel with the development of their size and morphology during hydrothermal synthesis. The nanoplatelets are formed by reactions between Ba- and Fe-hydroxides in an aqueous suspension at temperatures below 80 °C. Scanning-transmission electron microscopy showed that the structure of the as-synthesized, discoid nanoplatelets (∼2.3 nm thick, ∼10 nm wide) terminates at the basal surfaces with Ba-containing planes. However, after subsequent washing of the nanoplatelets with water the top two atomic layers dissolve from the surfaces. The final structure can be represented by a SRS* sequence of the barium-hexaferrite SRS*R* unit cell, where S and R represent a hexagonal (BaFe6O11)2- and a cubic (Fe6O8)2+ structural block, respectively. Due to the stable SRS* structure, the thickness of the primary nanoplatelets remains unchanged up to approximately 150 °C, when some of the primary nanoplatelets start to grow exaggeratedly and their thicknesses increase discretely with the addition of the RS segments to their structure. The SRS* structure of the primary nanoplatelets is too thin for the complete development of magnetic ordering. However, the addition of just one RS segment (SRS*R*S structure) gives the nanoplatelets hard magnetic properties.

2.
Nanoscale ; 9(44): 17551-17560, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29111545

RESUMO

Atomic-resolution scanning-transmission electron microscopy showed that barium hexaferrite (BHF) nanoplatelets display a distinct structure, which represents a novel structural variation of hexaferrites stabilized on the nanoscale. The structure can be presented in terms of two alternating structural blocks stacked across the nanoplatelet: a hexagonal (BaFe6O11)2- R block and a cubic (Fe6O8)2+ spinel S block. The structure of the BHF nanoplatelets comprises only two, or rarely three, R blocks and always terminates at the basal surfaces with the full S blocks. The structure of a vast majority of the nanoplatelets can be described with a SR*S*RS stacking order, corresponding to a BaFe15O23 composition. The nanoplatelets display a large, uniaxial magnetic anisotropy with the easy axis perpendicular to the platelet, which is a crucial property enabling different novel applications based on aligning the nanoplatelets with applied magnetic fields. However, the BHF nanoplatelets exhibit a modest saturation magnetization, MS, of just over 30 emu g-1. Given the cubic S block termination of the platelets, layers of maghemite, γ-Fe2O3, (M), with a cubic spinel structure, can be easily grown epitaxially on the surfaces of the platelets, forming a sandwiched M/BHF/M platelet structure. The exchange-coupled composite nanoplatelets exhibit a remarkably uniform structure, with an enhanced MS of more than 50 emu g-1 while essentially maintaining the out-of-plane easy axis. The enhanced MS could pave the way for their use in diverse platelet-based magnetic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...