Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 463(4): 483-9, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26002470

RESUMO

The Wnt signaling pathway is crucial for development and disease. The regulation of Wnt protein trafficking is one of the pivotal issues in the Wnt research field. Here we performed a genetic screen in Drosophila melanogaster for genes involved in Wingless/Wnt secretion, and identified the p24 protein family members Baiser, CHOp24, Eclair and a v-SNARE protein Sec22, which are involved in the early secretory pathway of Wingless/Wnt. We provided genetic evidence demonstrating that loss of p24 proteins or Sec22 impedes Wingless (Wg) secretion in Drosophila wing imaginal discs. We found that Baiser cannot replace other p24 proteins (CHOp24 or Eclair) in escorting Wg, and only Baiser and CHOp24 interact with Wg. Moreover, we showed that the v-SNARE protein Sec22 and Wg are packaged together with p24 proteins. Taken together, our data provide important insights into the early secretory pathway of Wg/Wnt.


Assuntos
Proteínas de Drosophila/metabolismo , Proteína Wnt1/metabolismo , Animais , Sequência de Bases , Primers do DNA , Drosophila melanogaster , Transporte Proteico
2.
Dev Biol ; 364(1): 32-41, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22285813

RESUMO

Wnt members act as morphogens essential for embryonic patterning and adult homeostasis. Currently, it is still unclear how Wnt secretion and its gradient formation are regulated. In this study, we examined the roles of N-glycosylation and lipidation/acylation in regulating the activities of Wingless (Wg), the main Drosophila Wnt member. We show that Wg mutant devoid of all the N-glycosylations exhibits no major defects in either secretion or signaling, indicating that N-glycosylation is dispensable for Wg activities. We demonstrate that lipid modification at Serine 239 (S239) rather than that at Cysteine 93 (C93) plays a more important role in regulating Wg signaling in multiple developmental contexts. Wg S239 mutant exhibits a reduced ability to bind its receptor, Drosophila Frizzled 2 (dFz2), suggesting that S239 is involved in the formation of a Wg/receptor complex. Importantly, while single Wg C93 or Wg S239 mutants can be secreted, removal of both acyl groups at C93 and S239 renders Wg incapable of reaching the plasma membrane for secretion. These data argue that lipid modifications at C93 and S239 play major roles in Wg secretion. Further experiments demonstrate that two acyl attachment sites in the Wg protein are required for the interaction of Wg with Wntless (Wls, also known as Evi or Srt), the key cargo receptor involved in Wg secretion. Together, our data demonstrate the in vivo roles of N-glycosylation and lipid modification in Wg secretion and signaling.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Metabolismo dos Lipídeos , Transdução de Sinais , Proteína Wnt1/metabolismo , Animais , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Embrião não Mamífero/metabolismo , Receptores Frizzled/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glicosilação , Mutação , Ligação Proteica , Proteína Wnt1/genética
3.
Cell Res ; 21(12): 1677-90, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22041890

RESUMO

Drosophila Wingless (Wg) acts as a morphogen during development. Wg secretion is controlled by a seven-pass transmembrane cargo Wntless (Wls). We have recently identified retromer as a key regulator involved in Wls trafficking. As sorting nexin (SNX) molecules are essential components of the retromer complex, we hypothesized that specific SNX(s) is required for retromer-mediated Wnt secretion. Here, we generated Drosophila mutants for all of the eight snx members, and identified Drosophila SNX3 (DSNX3) as an essential molecule required for Wg secretion. We show that Wg secretion and its signaling activity are defective in Dsnx3 mutant clones in wing discs. Wg levels in the culture medium of Dsnx3-depleted S2 cells are also markedly reduced. Importantly, Wls levels are strikingly reduced in Dsnx3 mutant cells, and overexpression of Wls can rescue the Wg secretion defect observed in Dsnx3 mutant cells. Moreover, DSNX3 can interact with the retromer component Vps35, and co-localize with Vps35 in early endosomes. These data indicate that DSNX3 regulates Wg secretion via retromer-dependent Wls recycling. In contrast, we found that Wg secretion is not defective in cells mutant for Drosophila snx1 and snx6, two components of the classical retromer complex. Ectopic expression of DSNX1 or DSNX6 fails to rescue the Wg secretion defect in Dsnx3 mutant wing discs and in Dsnx3 dsRNA-treated S2 cells. These data demonstrate the specificity of the DSNX3-retromer complex in Wls recycling. Together, our findings suggest that DSNX3 acts as a cargo-specific component of retromer, which is required for endocytic recycling of Wls and Wg/Wnt secretion.


Assuntos
Proteínas de Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Nexinas de Classificação/metabolismo , Proteínas Wnt/metabolismo , Proteína Wnt1/metabolismo , Animais , Linhagem Celular , Drosophila , Proteínas de Drosophila/genética , Endossomos/metabolismo , Mutação , Transdução de Sinais , Nexinas de Classificação/genética , Proteínas de Transporte Vesicular/metabolismo
4.
Methods Enzymol ; 480: 33-50, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20816203

RESUMO

Heparan sulfate proteoglycans (HSPGs) are cell-surface and extracellular matrix (ECM) macromolecules that comprise a core protein to which heparan sulfate (HS) glycosaminoglycan (GAG) chains are attached. Glypican is a major family of HSPGs that is linked to the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor. Over the past decade, fruit fly Drosophila has been used as a powerful model system to examine the functions of HSPGs in cell signaling and development. There are two members of Drosophila glypicans named division abnormally delayed (Dally) and Dally-like (Dlp). To study the functions of these two glypicans in development, we have generated the null mutants of dally and dlp. Here, we describe the methods employed to analyze their functions in development with a focus on Dlp in the context of Wingless signaling. Our data suggest that Dlp shows biphasic activity in Wingless/Wnt signaling and distribution.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Drosophila/genética , Proteoglicanas/fisiologia , Proteína Wnt1/metabolismo , Proteína Wnt1/fisiologia , Animais , Animais Geneticamente Modificados , Drosophila/embriologia , Drosophila/metabolismo , Drosophila/fisiologia , Proteínas de Drosophila/genética , Embrião não Mamífero , Técnicas de Transferência de Genes , Glipicanas/genética , Glipicanas/metabolismo , Glipicanas/fisiologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/fisiologia , Modelos Biológicos , Proteoglicanas/genética , Proteoglicanas/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Distribuição Tecidual/genética , Asas de Animais/embriologia , Asas de Animais/metabolismo , Proteína Wnt1/genética
5.
Development ; 137(12): 2033-44, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20501592

RESUMO

Hedgehog (Hh) acts as a morphogen in various developmental contexts to specify distinct cell fates in a concentration-dependent manner. Hh signaling is regulated by two conserved cell-surface proteins: Ig/fibronectin superfamily member Interference hedgehog (Ihog) and Dally-like (Dlp), a glypican that comprises a core protein and heparan sulfate glycosaminoglycan (GAG) chains. Here, we show in Drosophila that the Dlp core protein can interact with Hh and is essential for its function in Hh signaling. In wing discs, overexpression of Dlp increases short-range Hh signaling while reducing long-range signaling. By contrast, Ihog has biphasic activity in Hh signaling in cultured cells: low levels of Ihog increase Hh signaling, whereas high levels decrease it. In wing discs, overexpression of Ihog represses high-threshold targets, while extending the range of low-threshold targets, thus showing opposite effects to Dlp. We further show that Ihog and its family member Boi are required to maintain Hh on the cell surface. Finally, Ihog and Dlp have complementary expression patterns in discs. These data led us to propose that Dlp acts as a signaling co-receptor. However, Ihog might not act as a classic co-receptor; rather, it may act as an exchange factor by retaining Hh on the cell surface, but also compete with the receptor for Hh binding.


Assuntos
Glipicanas/metabolismo , Proteínas Hedgehog/metabolismo , Transdução de Sinais/fisiologia , Asas de Animais/metabolismo , Animais , Células Cultivadas , Drosophila/genética , Drosophila/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo , Glipicanas/genética , Proteínas Hedgehog/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transdução de Sinais/genética , Asas de Animais/citologia
6.
Dev Cell ; 14(1): 120-31, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18160348

RESUMO

Secreted Wnt proteins play essential roles in many biological processes during development and diseases. However, little is known about the mechanism(s) controlling Wnt secretion. Recent studies have identified Wntless (Wls) and the retromer complex as essential components involved in Wnt signaling. While Wls has been shown to be essential for Wnt secretion, the function(s) of the retromer complex in Wnt signaling is unknown. Here, we have examined a role of Vps35, an essential retromer subunit, in Wnt signaling in Drosophila and mammalian cells. We provide compelling evidence that the retromer complex is required for Wnt secretion. Importantly, Vps35 colocalizes in endosomes and interacts with Wls. Wls becomes unstable in the absence of retromer activity. Our findings link Wls and retromer functions in the same conserved Wnt secretion pathway. We propose that retromer influences Wnt secretion by recycling Wntless from endosomes to the trans-Golgi network (TGN).


Assuntos
Membrana Celular/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/embriologia , Endossomos/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Wnt/metabolismo , Rede trans-Golgi/fisiologia , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrião não Mamífero/fisiologia , Homeostase , Transdução de Sinais , Proteínas de Transporte Vesicular/fisiologia , Proteínas Wnt/genética
7.
Development ; 132(4): 667-79, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15647319

RESUMO

Drosophila Wingless (Wg) is the founding member of the Wnt family of secreted proteins. During the wing development, Wg acts as a morphogen whose concentration gradient provides positional cues for wing patterning. The molecular mechanism(s) of Wg gradient formation is not fully understood. Here, we systematically analyzed the roles of glypicans Dally and Dally-like protein (Dlp), the Wg receptors Frizzled (Fz) and Fz2, and the Wg co-receptor Arrow (Arr) in Wg gradient formation in the wing disc. We demonstrate that both Dally and Dlp are essential and have different roles in Wg gradient formation. The specificities of Dally and Dlp in Wg gradient formation are at least partially achieved by their distinct expression patterns. To our surprise, although Fz2 was suggested to play an essential role in Wg gradient formation by ectopic expression studies, removal of Fz2 activity does not alter the extracellular Wg gradient. Interestingly, removal of both Fz and Fz2, or Arr causes enhanced extracellular Wg levels, which is mainly resulted from upregulated Dlp levels. We further show that Notum, a negative regulator of Wg signaling, downregulates Wg signaling mainly by modifying Dally. Last, we demonstrate that Wg movement is impeded by cells mutant for both dally and dlp. Together, these new findings suggest that the Wg morphogen gradient in the wing disc is mainly controlled by combined actions of Dally and Dlp. We propose that Wg establishes its concentration gradient by a restricted diffusion mechanism involving Dally and Dlp in the wing disc.


Assuntos
Proteínas de Drosophila/metabolismo , Glicoproteínas de Membrana/metabolismo , Morfogênese/fisiologia , Proteoglicanas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Asas de Animais/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Receptores Frizzled , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Morfogênese/genética , Mutação/genética , Proteoglicanas/genética , Proteínas Proto-Oncogênicas/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G , Receptores de Neurotransmissores/genética , Receptores de Neurotransmissores/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Asas de Animais/embriologia , Proteína Wnt1
8.
Cell ; 119(2): 231-44, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15479640

RESUMO

The Drosophila transforming growth factor beta (TGF-beta) homolog Decapentaplegic (Dpp) acts as a morphogen that forms a long-range concentration gradient to direct the anteroposterior patterning of the wing. Both planar transcytosis initiated by Dynamin-mediated endocytosis and extracellular diffusion have been proposed for Dpp movement across cells. In this work, we found that Dpp is mainly extracellular, and its extracellular gradient coincides with its activity gradient. We demonstrate that a blockage of endocytosis by the dynamin mutant shibire does not block Dpp movement but rather inhibits Dpp signal transduction, suggesting that endocytosis is not essential for Dpp movement but is involved in Dpp signaling. Furthermore, we show that Dpp fails to move across cells mutant for dally and dally-like (dly), two Drosophila glypican members of heparin sulfate proteoglycan (HSPG). Our results support a model in which Dpp moves along the cell surface by restricted extracellular diffusion involving the glypicans Dally and Dly.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Dinaminas/metabolismo , Estruturas Embrionárias/fisiologia , Endocitose/fisiologia , Glicoproteínas de Membrana/metabolismo , Proteoglicanas/metabolismo , Animais , Transporte Biológico/fisiologia , Padronização Corporal , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/fisiologia , Dinaminas/genética , Estruturas Embrionárias/citologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia , Asas de Animais/citologia , Asas de Animais/embriologia , Asas de Animais/metabolismo
9.
Development ; 131(7): 1563-75, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-14998928

RESUMO

Heparan sulfate proteoglycans (HSPG) have been implicated in regulating the signalling activities of secreted morphogen molecules including Wingless (Wg), Hedgehog (Hh) and Decapentaplegic (Dpp). HSPG consists of a protein core to which heparan sulfate (HS) glycosaminoglycan (GAG) chains are attached. The formation of HS GAG chains is catalyzed by glycosyltransferases encoded by members of the EXT family of putative tumor suppressors linked to hereditary multiple exostoses. Previous studies in Drosophila demonstrated that tout-velu (ttv), the Drosophila EXT1, is required for Hh movement. However, the functions of other EXT family members are unknown. We have identified and isolated the other two members of the Drosophila EXT family genes, which are named sister of tout-velu (sotv) and brother of tout-velu (botv), and encode Drosophila homologues of vertebrate EXT2 and EXT-like 3 (EXTL3), respectively. We show that both Hh and Dpp signalling activities, as well as their morphogen distributions, are defective in cells mutant for ttv, sotv or botv in the wing disc. Surprisingly, although Wg morphogen distribution is abnormal in ttv, sotv and botv, Wg signalling is only defective in botv mutants or ttv-sotv double mutants, and not in ttv nor sotv alone, suggesting that Ttv and Sotv are redundant in Wg signalling. We demonstrate further that Ttv and Sotv form a complex and are co-localized in vivo. Our results, along with previous studies on Ttv, provide evidence that all three Drosophila EXT proteins are required for the biosynthesis of HSPGs, and for the gradient formation of the Wg, Hh and Dpp morphogens. Our results also suggest that HSPGs have two distinct roles in Wg morphogen distribution and signalling.


Assuntos
Padronização Corporal , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Proteínas de Membrana/metabolismo , Morfogênese , N-Acetilglucosaminiltransferases/metabolismo , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Estruturas Embrionárias/fisiologia , Exostose Múltipla Hereditária/genética , Glicosaminoglicanos/biossíntese , Proteínas Hedgehog , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Família Multigênica , N-Acetilglucosaminiltransferases/química , N-Acetilglucosaminiltransferases/genética , Fenótipo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Proteína Wnt1
10.
Development ; 131(3): 601-11, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14729575

RESUMO

The signalling molecule Hedgehog (Hh) functions as a morphogen to pattern a field of cells in animal development. Previous studies in Drosophila have demonstrated that Tout-velu (Ttv), a heparan sulphate polymerase, is required for Hh movement across receiving cells. However, the molecular mechanism of Ttv- mediated Hh movement is poorly defined. We show that Dally and Dally-like (Dly), two Drosophila glypican members of the heparan sulphate proteoglycan (HSPG) family, are the substrates of Ttv and are essential for Hh movement. We show that embryos lacking dly activity exhibit defects in Hh distribution and its subsequent signalling. However, both Dally and Dly are involved and are functionally redundant in Hh movement during wing development. We further demonstrate that Hh movement in its receiving cells is regulated by a cell-to-cell mechanism that is independent of dynamin-mediated endocytosis. We propose that glypicans transfer Hh along the cell membrane to pattern a field of cells.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Animais , Dinaminas/metabolismo , Embrião não Mamífero/metabolismo , Endocitose/fisiologia , Proteínas Hedgehog , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico/fisiologia , Proteoglicanas/metabolismo , Transdução de Sinais/fisiologia , Asas de Animais/embriologia , Asas de Animais/metabolismo
11.
Development ; 129(17): 4089-101, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12163411

RESUMO

The Wingless (Wg)/Wnt signal transduction pathway regulates many developmental processes through a complex of Armadillo(Arm)/beta-catenin and the HMG-box transcription factors of the Tcf family. We report the identification of a new component, Pygopus (Pygo), that plays an essential role in the Wg/Wnt signal transduction pathway. We show that Wg signaling is diminished during embryogenesis and imaginal disc development in the absence of pygo activity. Pygo acts downstream or in parallel with Arm to regulate the nuclear function of Arm protein. pygo encodes a novel and evolutionarily conserved nuclear protein bearing a PHD finger that is essential for its activity. We further show that Pygo can form a complex with Arm in vivo and possesses a transcription activation domain(s). Finally, we have isolated a Xenopus homolog of pygo (Xpygo). Depletion of maternal Xpygo by antisense deoxyoligonucleotides leads to ventralized embryonic defects and a reduction of the expression of Wnt target genes. Together, these findings demonstrate that Pygo is an essential component in the Wg/Wnt signal transduction pathway and is likely to act as a transcription co-activator required for the nuclear function of Arm/beta-catenin.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas de Drosophila/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Transativadores , Proteínas de Peixe-Zebra , Sequência de Aminoácidos , Animais , Proteínas do Domínio Armadillo , Proteínas de Transporte/genética , Núcleo Celular/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Insetos/metabolismo , Larva/metabolismo , Dados de Sequência Molecular , Oócitos/metabolismo , Estrutura Terciária de Proteína , Fatores de Transcrição , Ativação Transcricional , Proteínas Wnt , Proteína Wnt1 , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...