Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 18(27): e2201993, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35670200

RESUMO

Polymersomes are vesicular structures self-assembled from amphiphilic block copolymers and are considered an alternative to liposomes for applications in drug delivery, immunotherapy, biosensing, and as nanoreactors and artificial organelles. However, the limited availability of systematic stability, protein fouling (protein corona formation), and blood circulation studies hampers their clinical translation. Poly(2-oxazoline)s (POx) are valuable antifouling hydrophilic polymers that can replace the current gold-standard, poly(ethylene glycol) (PEG), yet investigations of POx functionality on nanoparticles are relatively sparse. Herein, a systematic study is reported of the structural, dynamic and antifouling properties of polymersomes made of poly(2-methyl-2-oxazoline)-block-poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) (PMOXA-b-PDMS-b-PMOXA). The study relates in vitro antifouling performance of the polymersomes to atomistic molecular dynamics simulations of polymersome membrane hydration behavior. These observations support the experimentally demonstrated benefit of maximizing the length of PMOXA (degree of polymerization (DP) > 6) while keeping PDMS at a minimal length that still provides sufficient membrane stability (DP > 19). In vitro macrophage association and in vivo blood circulation evaluation of polymersomes in zebrafish embryos corroborate these findings. They further suggest that single copolymer presentation on polymersomes is outperformed by blends of varied copolymer lengths. This study helps to rationalize design rules for stable and low-fouling polymersomes for future medical applications.


Assuntos
Sistemas de Liberação de Medicamentos , Peixe-Zebra , Animais , Interações Hidrofóbicas e Hidrofílicas , Macrófagos , Oxazóis
2.
Nat Mater ; 21(6): 710-720, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35606429

RESUMO

Activation of the innate immune STimulator of INterferon Genes (STING) pathway potentiates antitumour immunity, but systemic delivery of STING agonists to tumours is challenging. We conjugated STING-activating cyclic dinucleotides (CDNs) to PEGylated lipids (CDN-PEG-lipids; PEG, polyethylene glycol) via a cleavable linker and incorporated them into lipid nanodiscs (LNDs), which are discoid nanoparticles formed by self-assembly. Compared to state-of-the-art liposomes, intravenously administered LNDs carrying CDN-PEG-lipid (LND-CDNs) exhibited more efficient penetration of tumours, exposing the majority of tumour cells to STING agonist. A single dose of LND-CDNs induced rejection of established tumours, coincident with immune memory against tumour rechallenge. Although CDNs were not directly tumoricidal, LND-CDN uptake by cancer cells correlated with robust T-cell activation by promoting CDN and tumour antigen co-localization in dendritic cells. LNDs thus appear promising as a vehicle for robust delivery of compounds throughout solid tumours, which can be exploited for enhanced immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Imunoterapia , Lipídeos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/farmacologia , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico
3.
J Phys Chem B ; 126(15): 2789-2797, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35394774

RESUMO

The generation and sensing of membrane curvature by proteins has become of increasing interest to researchers with multiple mechanisms, from hydrophobic insertion to protein crowding, being identified. However, the role of charged lipids in the membrane curvature-sensing process is still far from understood. Many proteins involved in endocytosis bind phosphatidylinositol 4,5-bisphosphate (PIP2) lipids, allowing these proteins to accumulate at regions of local curvature. Here, using coarse-grained molecular dynamics simulations, we study the curvature-sensing behavior of the ANTH domain, a protein crucial for endocytosis. We selected three ANTH crystal structures containing either an intact, split, or truncated terminal amphipathic helix. On neutral membranes, the ANTH domain has innate curvature-sensing ability. In the presence of PIP2, however, only the domain with an intact helix senses curvature. Our work sheds light on the role of PIP2 and its modulation of membrane curvature sensing by proteins.


Assuntos
Endocitose , Fosfatidilinositóis , Membrana Celular/química , Simulação de Dinâmica Molecular , Fosfatidilinositóis/metabolismo , Proteínas/metabolismo
4.
Angew Chem Int Ed Engl ; 60(18): 9891-9896, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33590604

RESUMO

Iodide-mediated surface etching can tailor the surface plasmon resonance of gold nanostars through etching of the high-energy facets of the nanoparticle protrusions in a rapid and sensitive way. By exploring the underlying mechanisms of this etching and the key parameters influencing it (such as iodide, oxygen, pH, and temperature), we show its potential in a sensitive biosensing system. Horseradish peroxidase-catalyzed oxidation of iodide enables control of the etching of gold nanostars to spherical gold nanoparticles, where the resulting spectral shift in the surface plasmon resonance yields a distinct color change of the solution. We further develop this enzyme-modulated surface etching of gold nanostars into a versatile platform for plasmonic immunoassays, where a high sensitivity is possible by signal amplification via magnetic beads and click chemistry.


Assuntos
Técnicas Biossensoriais , Ouro/química , Iodetos/química , Nanopartículas Metálicas/química , Biocatálise , Ouro/metabolismo , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Iodetos/metabolismo , Oxirredução , Propriedades de Superfície
5.
ACS Nano ; 14(12): 16919-16928, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33300799

RESUMO

Nanoscale membrane curvature is a common feature in cell biology required for functions such as endocytosis, exocytosis and cell migration. These processes require the cytoskeleton to exert forces on the membrane to deform it. Cytosolic proteins contain specific motifs which bind to the membrane, connecting it to the internal cytoskeletal machinery. These motifs often bind charged phosphatidylinositol phosphate lipids present in the cell membrane which play significant roles in signaling. These lipids are important for membrane deforming processes, such as endocytosis, but much remains unknown about their role in the sensing of membrane nanocurvature by protein domains. Using coarse-grained molecular dynamics simulations, we investigated the interaction of a model curvature active protein domain, the epsin N-terminal homology domain (ENTH), with curved lipid membranes. The combination of anionic lipids (phosphatidylinositol 4,5-bisphosphate and phosphatidylserine) within the membrane, protein backbone flexibility, and structural changes within the domain were found to affect the domain's ability to sense, bind, and localize with nanoscale precision at curved membrane regions. The findings suggest that the ENTH domain can sense membrane curvature without the presence of its terminal amphipathic α helix via another structural region we have denoted as H3, re-emphasizing the critical relationship between nanoscale membrane curvature and protein function.

6.
Nat Commun ; 11(1): 207, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31924755

RESUMO

Label-free surface-enhanced Raman spectroscopy (SERS) can interrogate systems by directly fingerprinting their components' unique physicochemical properties. In complex biological systems however, this can yield highly overlapping spectra that hinder sample identification. Here, we present an artificial-nose inspired SERS fingerprinting approach where spectral data is obtained as a function of sensor surface chemical functionality. Supported by molecular dynamics modeling, we show that mildly selective self-assembled monolayers can influence the strength and configuration in which analytes interact with plasmonic surfaces, diversifying the resulting SERS fingerprints. Since each sensor generates a modulated signature, the implicit value of increasing the dimensionality of datasets is shown using cell lysates for all possible combinations of up to 9 fingerprints. Reliable improvements in mean discriminatory accuracy towards 100% are achieved with each additional surface functionality. This arrayed label-free platform illustrates the wide-ranging potential of high-dimensionality artificial-nose based sensing systems for more reliable assessment of complex biological matrices.


Assuntos
Técnicas Biossensoriais , Nariz Eletrônico , Análise Espectral Raman/métodos , Fenômenos Químicos , Ouro/química , Nanopartículas Metálicas/química , Modelos Biológicos , Simulação de Dinâmica Molecular , Análise Multivariada , Análise Espectral Raman/instrumentação
7.
Adv Mater ; 32(9): e1903862, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31944430

RESUMO

Materials patterned with high-aspect-ratio nanostructures have features on similar length scales to cellular components. These surfaces are an extreme topography on the cellular level and have become useful tools for perturbing and sensing the cellular environment. Motivation comes from the ability of high-aspect-ratio nanostructures to deliver cargoes into cells and tissues, access the intracellular environment, and control cell behavior. These structures directly perturb cells' ability to sense and respond to external forces, influencing cell fate, and enabling new mechanistic studies. Through careful design of their nanoscale structure, these systems act as biological metamaterials, eliciting unusual biological responses. While predominantly used to interface eukaryotic cells, there is growing interest in nonanimal and prokaryotic cell interfacing. Both experimental and theoretical studies have attempted to develop a mechanistic understanding for the observed behaviors, predominantly focusing on the cell-nanostructure interface. This review considers how high-aspect-ratio nanostructured surfaces are used to both stimulate and sense biological systems.


Assuntos
Materiais Biocompatíveis/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Células Eucarióticas/ultraestrutura , Nanoestruturas/química , Animais , Fenômenos Biomecânicos , Adesão Celular , Diferenciação Celular , Permeabilidade da Membrana Celular , Técnicas Eletroquímicas , Humanos , Metais/química , Processos Fotoquímicos , Polímeros/química , Porosidade , Silício/química , Propriedades de Superfície
8.
Nano Lett ; 19(7): 4770-4778, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31241342

RESUMO

Nanoporous surfaces are used in many applications in intracellular sensing and drug delivery. However, the effects of such nanostructures on cell membrane properties are still far from understood. Here, we use coarse-grained molecular dynamics simulations to show that nanoporous substrates can stimulate membrane-curvature effects and that this curvature-sensing effect is much more sensitive than previously thought. We define a series of design parameters for inducing a nanoscale membrane curvature and show that nanopore taper plays a key role in membrane deformation, elucidating a previously unexplored fabrication parameter applicable to many nanostructured biomaterials. We report significant changes in the membrane area per lipid and thickness at regions of curvature. Finally, we demonstrate that regions of the nanopore-induced membrane curvature act as local hotspots for an increased bioactivity. We show spontaneous binding and localization of the epsin N-terminal homology (ENTH) domain to the regions of curvature. Understanding this interplay between the membrane curvature and nanoporosity at the biointerface helps both explain recent biological results and suggests a pathway for developing the next generation of cell-active substrates.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/química , Membrana Celular/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Nanoporos , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo
9.
Nat Commun ; 8(1): 1137, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29074955

RESUMO

Alloy and microstructure optimization have led to impressive improvements in the strength of engineering metals, while the range of Young's moduli achievable has remained essentially unchanged. This is because stiffness is insensitive to microstructure and bounded by individual components in composites. Here we design ultra-low stiffness in fully dense, nanostructured metals via the stabilization of a mechanically unstable, negative stiffness state of a martensitic alloy by its coherent integration with a compatible, stable second component. Explicit large-scale molecular dynamics simulations of the metamaterials with state of the art potentials confirm the expected ultra-low stiffness while maintaining full strength. We find moduli as low as 2 GPa, a value typical of soft materials and over one order of magnitude lower than either constituent, defying long-standing composite bounds. Such properties are attractive for flexible electronics and implantable devices. Our concept is generally applicable and could significantly enhance materials science design space.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...